Bohdan Didenko


2023

pdf bib
RedPenNet for Grammatical Error Correction: Outputs to Tokens, Attentions to Spans
Bohdan Didenko | Andrii Sameliuk
Proceedings of the Second Ukrainian Natural Language Processing Workshop (UNLP)

The text editing tasks, including sentence fusion, sentence splitting and rephrasing, text simplification, and Grammatical Error Correction (GEC), share a common trait of dealing with highly similar input and output sequences. This area of research lies at the intersection of two well-established fields: (i) fully autoregressive sequence-to-sequence approaches commonly used in tasks like Neural Machine Translation (NMT) and (ii) sequence tagging techniques commonly used to address tasks such as Part-of-speech tagging, Named-entity recognition (NER), and similar. In the pursuit of a balanced architecture, researchers have come up with numerous imaginative and unconventional solutions, which we’re discussing in the Related Works section. Our approach to addressing text editing tasks is called RedPenNet and is aimed at reducing architectural and parametric redundancies presented in specific Sequence-To-Edits models, preserving their semi-autoregressive advantages. Our models achieve F0.5 scores of 77.60 on the BEA-2019 (test), which can be considered as state-of-the-art the only exception for system combination (Qorib et al., 2022) and 67.71 on the UAGEC+Fluency (test) benchmarks. This research is being conducted in the context of the UNLP 2023 workshop, where it will be presented as a paper for the Shared Task in Grammatical Error Correction (GEC) for Ukrainian. This study aims to apply the RedPenNet approach to address the GEC problem in the Ukrainian language.

2019

pdf bib
Multi-headed Architecture Based on BERT for Grammatical Errors Correction
Bohdan Didenko | Julia Shaptala
Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications

In this paper, we describe our approach to GEC using the BERT model for creation of encoded representation and some of our enhancements, namely, “Heads” are fully-connected networks which are used for finding the errors and later receive recommendation from the networks on dealing with a highlighted part of the sentence only. Among the main advantages of our solution is increasing the system productivity and lowering the time of processing while keeping the high accuracy of GEC results.