Bradley A. Malin


2024

pdf bib
Do You Know What You Are Talking About? Characterizing Query-Knowledge Relevance For Reliable Retrieval Augmented Generation
Zhuohang Li | Jiaxin Zhang | Chao Yan | Kamalika Das | Sricharan Kumar | Murat Kantarcioglu | Bradley A. Malin
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Language models (LMs) are known to suffer from hallucinations and misinformation. Retrieval augmented generation (RAG) that retrieves verifiable information from an external knowledge corpus to complement the parametric knowledge in LMs provides a tangible solution to these problems. However, the generation quality of RAG is highly dependent on the relevance between a user’s query and the retrieved documents. Inaccurate responses may be generated when the query is outside of the scope of knowledge represented in the external knowledge corpus or if the information in the corpus is out-of-date. In this work, we establish a statistical framework that assesses how well a query can be answered by an RAG system by capturing the relevance of knowledge. We introduce an online testing procedure that employs goodness-of-fit (GoF) tests to inspect the relevance of each user query to detect out-of-knowledge queries with low knowledge relevance. Additionally, we develop an offline testing framework that examines a collection of user queries, aiming to detect significant shifts in the query distribution which indicates the knowledge corpus is no longer sufficiently capable of supporting the interests of the users. We demonstrate the capabilities of these strategies through a systematic evaluation on eight question-answering (QA) datasets, the results of which indicate that the new testing framework is an efficient solution to enhance the reliability of existing RAG systems.

pdf bib
Divide-Conquer-Reasoning for Consistency Evaluation and Automatic Improvement of Large Language Models
Wendi Cui | Zhuohang Li | Damien Lopez | Kamalika Das | Bradley A. Malin | Sricharan Kumar | Jiaxin Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

Evaluating the quality and consistency of text generated by Large Language Models (LLMs) poses a significant, yet unresolved challenge for industry research. We propose , an automated framework for evaluating and improving the consistency of LLM-generated texts using a divide-conquer-reasoning approach. Unlike existing LLM-based evaluators operating at the paragraph level, our method employs a divide-and-conquer evaluator () that breaks down the paragraph-to-paragraph comparison into sentence-to-paragraph comparisons. To facilitate this approach, we also introduce an automatic metric converter () that translates the output from into an interpretable numeric score. Beyond the consistency evaluation, we further present a reason-assisted improver () that mitigates inconsistencies by leveraging the analytical reasons identified by . Through comprehensive and systematic empirical analysis, we show that our approach outperforms state-of-the-art methods by a large margin (e.g., +16.8% and +32.5% on the SummEval dataset) in consistency evaluation across multiple benchmarks. Our approach also substantially reduces nearly 90% output inconsistencies in one iteration, showing promise for effective hallucination mitigation in real-world industrial applications.