Brian Ulicny


2025

pdf bib
BBN-U.Oregon’s ALERT system at GenAI Content Detection Task 3: Robust Authorship Style Representations for Cross-Domain Machine-Generated Text Detection
Hemanth Kandula | Chak Fai Li | Haoling Qiu | Damianos Karakos | Hieu Man | Thien Huu Nguyen | Brian Ulicny
Proceedings of the 1stWorkshop on GenAI Content Detection (GenAIDetect)

This paper presents BBN-U.Oregon’s system, ALERT, submitted to the Shared Task 3: Cross-Domain Machine-Generated Text Detection. Our approach uses robust authorship-style representations to distinguish between human-authored and machine-generated text (MGT) across various domains. We employ an ensemble-based authorship attribution (AA) system that integrates stylistic embeddings from two complementary subsystems: one that focuses on cross-genre robustness with hard positive and negative mining strategies and another that captures nuanced semantic-lexical-authorship contrasts. This combination enhances cross-domain generalization, even under domain shifts and adversarial attacks. Evaluated on the RAID benchmark, our system demonstrates strong performance across genres and decoding strategies, with resilience against adversarial manipulation, achieving 91.8% TPR at FPR=5% on standard test sets and 82.6% on adversarial sets.

2024

pdf bib
Improving Authorship Privacy: Adaptive Obfuscation with the Dynamic Selection of Techniques
Hemanth Kandula | Damianos Karakos | Haoling Qiu | Brian Ulicny
Proceedings of the Fifth Workshop on Privacy in Natural Language Processing

Authorship obfuscation, the task of rewriting text to protect the original author’s identity, is becoming increasingly important due to the rise of advanced NLP tools for authorship attribution techniques. Traditional methods for authorship obfuscation face significant challenges in balancing content preservation, fluency, and style concealment. This paper introduces a novel approach, the Obfuscation Strategy Optimizer (OSO), which dynamically selects the optimal obfuscation technique based on a combination of metrics including embedding distance, meaning similarity, and fluency. By leveraging an ensemble of language models OSO achieves superior performance in preserving the original content’s meaning and grammatical fluency while effectively concealing the author’s unique writing style. Experimental results demonstrate that the OSO outperforms existing methods and approaches the performance of larger language models. Our evaluation framework incorporates adversarial testing against state-of-the-art attribution systems to validate the robustness of the obfuscation techniques. We release our code publicly at https://github.com/BBN-E/ObfuscationStrategyOptimizer

2006

pdf bib
Lycos Retriever: An Information Fusion Engine
Brian Ulicny
Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume: Short Papers

1997

pdf bib
Book Review: Corpus Processing for Lexical Acquisition
Brian Ulicny
Computational Linguistics, Volume 23, Number 1, March 1997