Carlos Guestrin


2020

pdf bib
Beyond Accuracy: Behavioral Testing of NLP Models with CheckList
Marco Tulio Ribeiro | Tongshuang Wu | Carlos Guestrin | Sameer Singh
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.

2019

pdf bib
Are Red Roses Red? Evaluating Consistency of Question-Answering Models
Marco Tulio Ribeiro | Carlos Guestrin | Sameer Singh
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Although current evaluation of question-answering systems treats predictions in isolation, we need to consider the relationship between predictions to measure true understanding. A model should be penalized for answering “no” to “Is the rose red?” if it answers “red” to “What color is the rose?”. We propose a method to automatically extract such implications for instances from two QA datasets, VQA and SQuAD, which we then use to evaluate the consistency of models. Human evaluation shows these generated implications are well formed and valid. Consistency evaluation provides crucial insights into gaps in existing models, while retraining with implication-augmented data improves consistency on both synthetic and human-generated implications.

2018

pdf bib
Semantically Equivalent Adversarial Rules for Debugging NLP models
Marco Tulio Ribeiro | Sameer Singh | Carlos Guestrin
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Complex machine learning models for NLP are often brittle, making different predictions for input instances that are extremely similar semantically. To automatically detect this behavior for individual instances, we present semantically equivalent adversaries (SEAs) – semantic-preserving perturbations that induce changes in the model’s predictions. We generalize these adversaries into semantically equivalent adversarial rules (SEARs) – simple, universal replacement rules that induce adversaries on many instances. We demonstrate the usefulness and flexibility of SEAs and SEARs by detecting bugs in black-box state-of-the-art models for three domains: machine comprehension, visual question-answering, and sentiment analysis. Via user studies, we demonstrate that we generate high-quality local adversaries for more instances than humans, and that SEARs induce four times as many mistakes as the bugs discovered by human experts. SEARs are also actionable: retraining models using data augmentation significantly reduces bugs, while maintaining accuracy.

2016

pdf bib
“Why Should I Trust You?”: Explaining the Predictions of Any Classifier
Marco Ribeiro | Sameer Singh | Carlos Guestrin
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations