Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.
Although current evaluation of question-answering systems treats predictions in isolation, we need to consider the relationship between predictions to measure true understanding. A model should be penalized for answering “no” to “Is the rose red?” if it answers “red” to “What color is the rose?”. We propose a method to automatically extract such implications for instances from two QA datasets, VQA and SQuAD, which we then use to evaluate the consistency of models. Human evaluation shows these generated implications are well formed and valid. Consistency evaluation provides crucial insights into gaps in existing models, while retraining with implication-augmented data improves consistency on both synthetic and human-generated implications.
Complex machine learning models for NLP are often brittle, making different predictions for input instances that are extremely similar semantically. To automatically detect this behavior for individual instances, we present semantically equivalent adversaries (SEAs) – semantic-preserving perturbations that induce changes in the model’s predictions. We generalize these adversaries into semantically equivalent adversarial rules (SEARs) – simple, universal replacement rules that induce adversaries on many instances. We demonstrate the usefulness and flexibility of SEAs and SEARs by detecting bugs in black-box state-of-the-art models for three domains: machine comprehension, visual question-answering, and sentiment analysis. Via user studies, we demonstrate that we generate high-quality local adversaries for more instances than humans, and that SEARs induce four times as many mistakes as the bugs discovered by human experts. SEARs are also actionable: retraining models using data augmentation significantly reduces bugs, while maintaining accuracy.