Carolina Zheng
2023
An Invariant Learning Characterization of Controlled Text Generation
Carolina Zheng
|
Claudia Shi
|
Keyon Vafa
|
Amir Feder
|
David Blei
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Controlled generation refers to the problem of creating text that contains stylistic or semantic attributes of interest. Many approaches reduce this problem to training a predictor of the desired attribute. For example, researchers hoping to deploy a large language model to produce non-toxic content may use a toxicity classifier to filter generated text. In practice, the generated text to classify, which is determined by user prompts, may come from a wide range of distributions. In this paper, we show that the performance of controlled generation may be poor if the distributions of text in response to user prompts differ from the distribution the predictor was trained on. To address this problem, we cast controlled generation under distribution shift as an invariant learning problem: the most effective predictor should be invariant across multiple text environments. We then discuss a natural solution that arises from this characterization and propose heuristics for selecting natural environments. We study this characterization and the proposed method empirically using both synthetic and real data. Experiments demonstrate both the challenge of distribution shift in controlled generation and the potential of invariance methods in this setting.
2019
Complexity-Weighted Loss and Diverse Reranking for Sentence Simplification
Reno Kriz
|
João Sedoc
|
Marianna Apidianaki
|
Carolina Zheng
|
Gaurav Kumar
|
Eleni Miltsakaki
|
Chris Callison-Burch
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
Sentence simplification is the task of rewriting texts so they are easier to understand. Recent research has applied sequence-to-sequence (Seq2Seq) models to this task, focusing largely on training-time improvements via reinforcement learning and memory augmentation. One of the main problems with applying generic Seq2Seq models for simplification is that these models tend to copy directly from the original sentence, resulting in outputs that are relatively long and complex. We aim to alleviate this issue through the use of two main techniques. First, we incorporate content word complexities, as predicted with a leveled word complexity model, into our loss function during training. Second, we generate a large set of diverse candidate simplifications at test time, and rerank these to promote fluency, adequacy, and simplicity. Here, we measure simplicity through a novel sentence complexity model. These extensions allow our models to perform competitively with state-of-the-art systems while generating simpler sentences. We report standard automatic and human evaluation metrics.
Search
Fix data
Co-authors
- Marianna Apidianaki 1
- David Blei 1
- Chris Callison-Burch 1
- Amir Feder 1
- Reno Kriz 1
- show all...