Chiehyeon Lim
2024
Towards Pareto-Efficient RLHF: Paying Attention to a Few High-Reward Samples with Reward Dropout
Changhun Lee
|
Chiehyeon Lim
Findings of the Association for Computational Linguistics: EMNLP 2024
Recently, leveraging reinforcement learning (RL) to fine-tune language models (LMs), known as reinforcement learning from human feedback (RLHF), has become an important research topic. However, there is still a lack of theoretical understanding of how RLHF works, the conditions under which it succeeds or fails, and whether it guarantees optimization of both likelihood 𝛽(⋅) and reward R(⋅) objectives. To address these issues, we consider RLHF as a bi-objective problem that has the nature of a Pareto optimization, present a Pareto improvement condition that is necessary to obtain Pareto-efficient policies, and propose a simple yet powerful method named reward dropout that guarantees a Pareto improvement. To demonstrate the performance of reward dropout, two benchmark datasets commonly used in text style transfer tasks were utilized in our study: sentiment and topic datasets sourced from Yelp and AG_News, respectively. Our experiments highlight that paying attention to a few samples with higher rewards leads to greater Pareto improvements regardless of model size. We also demonstrate that the effect of reward dropout is generalizable and most effective with non-pretrained target models, saving the effort of pretraining.