Predicting the compositionality of noun compounds such as climate change and tennis elbow is a vital component in natural language understanding. While most previous computational methods that automatically determine the semantic relatedness between compounds and their constituents have applied a synchronic perspective, the current study investigates what diachronic changes in contexts and semantic topics of compounds and constituents reveal about the compounds’ present-day degrees of compositionality. We define a binary classification task that utilizes two diachronic vector spaces based on contextual co-occurrences and semantic topics, and demonstrate that diachronic changes in cosine similarities – measured over context or topic distributions – uncover patterns that distinguish between compounds with low and high present-day compositionality. Despite fewer dimensions in the topic models, the topic space performs on par with the co-occurrence space and captures rather similar information. Temporal similarities between compounds and modifiers as well as between compounds and their prepositional paraphrases predict the compounds’ present-day compositionality with accuracy >0.7.
In this paper, we present ISI-Clear, a state-of-the-art, cross-lingual, zero-shot event extraction system and accompanying user interface for event visualization & search. Using only English training data, ISI-Clear makes global events available on-demand, processing user-supplied text in 100 languages ranging from Afrikaans to Yiddish. We provide multiple event-centric views of extracted events, including both a graphical representation and a document-level summary. We also integrate existing cross-lingual search algorithms with event extraction capabilities to provide cross-lingual event-centric search, allowing English-speaking users to search over events automatically extracted from a corpus of non-English documents, using either English natural language queries (e.g. “cholera outbreaks in Iran”) or structured queries (e.g. find all events of type Disease-Outbreak with agent “cholera” and location “Iran”).
We investigate the effect of sub-word tokenization on representations of German noun compounds: single orthographic words which are composed of two or more constituents but often tokenized into units that are not morphologically motivated or meaningful. Using variants of BERT models and tokenization strategies on domain-specific restricted diachronic data, we introduce a suite of evaluations relying on the masked language modelling task and compositionality prediction. We obtain the most consistent improvements by pre-splitting compounds into constituents.