Chung-Lun Kuo
2016
Subtask Mining from Search Query Logs for How-Knowledge Acceleration
Chung-Lun Kuo
|
Hsin-Hsi Chen
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)
How-knowledge is indispensable in daily life, but has relatively less quantity and poorer quality than what-knowledge in publicly available knowledge bases. This paper first extracts task-subtask pairs from wikiHow, then mines linguistic patterns from search query logs, and finally applies the mined patterns to extract subtasks to complete given how-to tasks. To evaluate the proposed methodology, we group tasks and the corresponding recommended subtasks into pairs, and evaluate the results automatically and manually. The automatic evaluation shows the accuracy of 0.4494. We also classify the mined patterns based on prepositions and find that the prepositions like “on”, “to”, and “with” have the better performance. The results can be used to accelerate how-knowledge base construction.