Da Huo


2020

pdf bib
Inducing Universal Semantic Tag Vectors
Da Huo | Gerard de Melo
Proceedings of the Twelfth Language Resources and Evaluation Conference

Given the well-established usefulness of part-of-speech tag annotations in many syntactically oriented downstream NLP tasks, the recently proposed notion of semantic tagging (Bjerva et al. 2016) aims at tagging words with tags informed by semantic distinctions, which are likely to be useful across a range of semantic tasks. To this end, their annotation scheme distinguishes, for instance, privative attributes from subsective ones. While annotated corpora exist, their size is limited and thus many words are out-of-vocabulary words. In this paper, we study to what extent we can automatically predict the tags associated with unseen words. We draw on large-scale word representation data to derive a large new Semantic Tag lexicon. Our experiments show that we can infer semantic tags for words with high accuracy both monolingually and cross-lingually.
Search
Co-authors
Venues