Daiki Nishihara
2020
Word Complexity Estimation for Japanese Lexical Simplification
Daiki Nishihara
|
Tomoyuki Kajiwara
Proceedings of the Twelfth Language Resources and Evaluation Conference
We introduce three language resources for Japanese lexical simplification: 1) a large-scale word complexity lexicon, 2) the first synonym lexicon for converting complex words to simpler ones, and 3) the first toolkit for developing and benchmarking Japanese lexical simplification system. Our word complexity lexicon is expanded to a broader vocabulary using a classifier trained on a small, high-quality word complexity lexicon created by Japanese language teachers. Based on this word complexity estimator, we extracted simplified word pairs from a large-scale synonym lexicon and constructed a simplified synonym lexicon useful for lexical simplification. In addition, we developed a Python library that implements automatic evaluation and key methods in each subtask to ease the construction of a lexical simplification pipeline. Experimental results show that the proposed method based on our lexicon achieves the highest performance of Japanese lexical simplification. The current lexical simplification is mainly studied in English, which is rich in language resources such as lexicons and toolkits. The language resources constructed in this study will help advance the lexical simplification system in Japanese.
2019
Controllable Text Simplification with Lexical Constraint Loss
Daiki Nishihara
|
Tomoyuki Kajiwara
|
Yuki Arase
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop
We propose a method to control the level of a sentence in a text simplification task. Text simplification is a monolingual translation task translating a complex sentence into a simpler and easier to understand the alternative. In this study, we use the grade level of the US education system as the level of the sentence. Our text simplification method succeeds in translating an input into a specific grade level by considering levels of both sentences and words. Sentence level is considered by adding the target grade level as input. By contrast, the word level is considered by adding weights to the training loss based on words that frequently appear in sentences of the desired grade level. Although existing models that consider only the sentence level may control the syntactic complexity, they tend to generate words beyond the target level. Our approach can control both the lexical and syntactic complexity and achieve an aggressive rewriting. Experiment results indicate that the proposed method improves the metrics of both BLEU and SARI.