Dan Kondratyuk
2019
75 Languages, 1 Model: Parsing Universal Dependencies Universally
Dan Kondratyuk
|
Milan Straka
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
We present UDify, a multilingual multi-task model capable of accurately predicting universal part-of-speech, morphological features, lemmas, and dependency trees simultaneously for all 124 Universal Dependencies treebanks across 75 languages. By leveraging a multilingual BERT self-attention model pretrained on 104 languages, we found that fine-tuning it on all datasets concatenated together with simple softmax classifiers for each UD task can meet or exceed state-of-the-art UPOS, UFeats, Lemmas, (and especially) UAS, and LAS scores, without requiring any recurrent or language-specific components. We evaluate UDify for multilingual learning, showing that low-resource languages benefit the most from cross-linguistic annotations. We also evaluate for zero-shot learning, with results suggesting that multilingual training provides strong UD predictions even for languages that neither UDify nor BERT have ever been trained on.
Cross-Lingual Lemmatization and Morphology Tagging with Two-Stage Multilingual BERT Fine-Tuning
Dan Kondratyuk
Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology
We present our CHARLES-SAARLAND system for the SIGMORPHON 2019 Shared Task on Crosslinguality and Context in Morphology, in task 2, Morphological Analysis and Lemmatization in Context. We leverage the multilingual BERT model and apply several fine-tuning strategies introduced by UDify demonstrating exceptional evaluation performance on morpho-syntactic tasks. Our results show that fine-tuning multilingual BERT on the concatenation of all available treebanks allows the model to learn cross-lingual information that is able to boost lemmatization and morphology tagging accuracy over fine-tuning it purely monolingually. Unlike UDify, however, we show that when paired with additional character-level and word-level LSTM layers, a second stage of fine-tuning on each treebank individually can improve evaluation even further. Out of all submissions for this shared task, our system achieves the highest average accuracy and f1 score in morphology tagging and places second in average lemmatization accuracy.