Davide Locatelli


2024

pdf bib
Align and Augment: Generative Data Augmentation for Compositional Generalization
Francesco Cazzaro | Davide Locatelli | Ariadna Quattoni
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent work on semantic parsing has shown that seq2seq models find compositional generalization challenging. Several strategies have been proposed to mitigate this challenge. One such strategy is to improve compositional generalization via data augmentation techniques. In this paper we follow this line of work and propose Archer, a data-augmentation strategy that exploits alignment annotations between sentences and their corresponding meaning representations. More precisely, we use alignments to train a two step generative model that combines monotonic lexical generation with reordering. Our experiments show that Archer leads to significant improvements in compositional generalization performance.

2023

pdf bib
A Cross-Lingual Study of Homotransphobia on Twitter
Davide Locatelli | Greta Damo | Debora Nozza
Proceedings of the First Workshop on Cross-Cultural Considerations in NLP (C3NLP)

We present a cross-lingual study of homotransphobia on Twitter, examining the prevalence and forms of homotransphobic content in tweets related to LGBT issues in seven languages. Our findings reveal that homotransphobia is a global problem that takes on distinct cultural expressions, influenced by factors such as misinformation, cultural prejudices, and religious beliefs. To aid the detection of hate speech, we also devise a taxonomy that classifies public discourse around LGBT issues. By contributing to the growing body of research on online hate speech, our study provides valuable insights for creating effective strategies to combat homotransphobia on social media.

pdf bib
Translate First Reorder Later: Leveraging Monotonicity in Semantic Parsing
Francesco Cazzaro | Davide Locatelli | Ariadna Quattoni | Xavier Carreras
Findings of the Association for Computational Linguistics: EACL 2023

Prior work in semantic parsing has shown that conventional seq2seq models fail at compositional generalization tasks. This limitation led to a resurgence of methods that model alignments between sentences and their corresponding meaning representations, either implicitly through latent variables or explicitly by taking advantage of alignment annotations. We take the second direction and propose TPol, a two-step approach that first translates input sentences monotonically and then reorders them to obtain the correct output. This is achieved with a modular framework comprising a Translator and a Reorderer component. We test our approach on two popular semantic parsing datasets. Our experiments show that by means of the monotonic translations, TPol can learn reliable lexico-logical patterns from aligned data, significantly improving compositional generalization both over conventional seq2seq models, as well as over other approaches that exploit gold alignments.

2022

pdf bib
Measuring Alignment Bias in Neural Seq2seq Semantic Parsers
Davide Locatelli | Ariadna Quattoni
Proceedings of the 11th Joint Conference on Lexical and Computational Semantics

Prior to deep learning the semantic parsing community has been interested in understanding and modeling the range of possible word alignments between natural language sentences and their corresponding meaning representations. Sequence-to-sequence models changed the research landscape suggesting that we no longer need to worry about alignments since they can be learned automatically by means of an attention mechanism. More recently, researchers have started to question such premise. In this work we investigate whether seq2seq models can handle both simple and complex alignments. To answer this question we augment the popular Geo semantic parsing dataset with alignment annotations and create Geo-Aligned. We then study the performance of standard seq2seq models on the examples that can be aligned monotonically versus examples that require more complex alignments. Our empirical study shows that performance is significantly better over monotonic alignments.