Deuk Sin Kwon
2022
BECEL: Benchmark for Consistency Evaluation of Language Models
Myeongjun Jang
|
Deuk Sin Kwon
|
Thomas Lukasiewicz
Proceedings of the 29th International Conference on Computational Linguistics
Behavioural consistency is a critical condition for a language model (LM) to become trustworthy like humans. Despite its importance, however, there is little consensus on the definition of LM consistency, resulting in different definitions across many studies. In this paper, we first propose the idea of LM consistency based on behavioural consistency and establish a taxonomy that classifies previously studied consistencies into several sub-categories. Next, we create a new benchmark that allows us to evaluate a model on 19 test cases, distinguished by multiple types of consistency and diverse downstream tasks. Through extensive experiments on the new benchmark, we ascertain that none of the modern pre-trained language models (PLMs) performs well in every test case, while exhibiting high inconsistency in many cases. Our experimental results suggest that a unified benchmark that covers broad aspects (i.e., multiple consistency types and tasks) is essential for a more precise evaluation.
KoBEST: Korean Balanced Evaluation of Significant Tasks
Myeongjun Jang
|
Dohyung Kim
|
Deuk Sin Kwon
|
Eric Davis
Proceedings of the 29th International Conference on Computational Linguistics
A well-formulated benchmark plays a critical role in spurring advancements in the natural language processing (NLP) field, as it allows objective and precise evaluation of diverse models. As modern language models (LMs) have become more elaborate and sophisticated, more difficult benchmarks that require linguistic knowledge and reasoning have been proposed. However, most of these benchmarks only support English, and great effort is necessary to construct benchmarks for other low resource languages. To this end, we propose a new benchmark named Korean balanced evaluation of significant tasks (KoBEST), which consists of five Korean-language downstream tasks. Professional Korean linguists designed the tasks that require advanced Korean linguistic knowledge. Moreover, our data is purely annotated by humans and thoroughly reviewed to guarantee high data quality. We also provide baseline models and human performance results. Our dataset is available on the Huggingface.
Search