Dhwani Serai


2024

pdf bib
Targeted Multilingual Adaptation for Low-resource Language Families
C. Downey | Terra Blevins | Dhwani Serai | Dwija Parikh | Shane Steinert-Threlkeld
Findings of the Association for Computational Linguistics: EMNLP 2024

Massively multilingual models are known to have limited utility in any one language, and to perform particularly poorly on low-resource languages. By contrast, targeted multinguality has been shown to benefit low-resource languages. To test this approach more rigorously, we systematically study best practices for adapting a pre-trained model to a language family. Focusing on the Uralic family as a test case, we adapt XLM-R under various configurations to model 15 languages; we then evaluate the performance of each experimental setting on two downstream tasks and 11 evaluation languages. Our adapted models significantly outperform mono- and multilingual baselines. A regression analysis reveals that adapted vocabulary size is relatively unimportant for low-resource languages, and that low-resource languages can be aggressively up-sampled during training at little detriment to performance in high-resource languages. These results introduce new best practices for performing language adaptation in a targeted setting.