Divya Tadimeti


2022

pdf bib
Discovering Differences in the Representation of People using Contextualized Semantic Axes
Li Lucy | Divya Tadimeti | David Bamman
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

A common paradigm for identifying semantic differences across social and temporal contexts is the use of static word embeddings and their distances. In particular, past work has compared embeddings against “semantic axes” that represent two opposing concepts. We extend this paradigm to BERT embeddings, and construct contextualized axes that mitigate the pitfall where antonyms have neighboring representations. We validate and demonstrate these axes on two people-centric datasets: occupations from Wikipedia, and multi-platform discussions in extremist, men’s communities over fourteen years. In both studies, contextualized semantic axes can characterize differences among instances of the same word type. In the latter study, we show that references to women and the contexts around them have become more detestable over time.

pdf bib
Evaluation of Off-the-shelf Speech Recognizers on Different Accents in a Dialogue Domain
Divya Tadimeti | Kallirroi Georgila | David Traum
Proceedings of the Thirteenth Language Resources and Evaluation Conference

We evaluate several publicly available off-the-shelf (commercial and research) automatic speech recognition (ASR) systems on dialogue agent-directed English speech from speakers with General American vs. non-American accents. Our results show that the performance of the ASR systems for non-American accents is considerably worse than for General American accents. Depending on the recognizer, the absolute difference in performance between General American accents and all non-American accents combined can vary approximately from 2% to 12%, with relative differences varying approximately between 16% and 49%. This drop in performance becomes even larger when we consider specific categories of non-American accents indicating a need for more diligent collection of and training on non-native English speaker data in order to narrow this performance gap. There are performance differences across ASR systems, and while the same general pattern holds, with more errors for non-American accents, there are some accents for which the best recognizer is different than in the overall case. We expect these results to be useful for dialogue system designers in developing more robust inclusive dialogue systems, and for ASR providers in taking into account performance requirements for different accents.