Dr. Apurbalal Senapati
2022
Hate speech detection: a comparison of mono and multilingual transformer model with cross-language evaluation
Koyel Ghosh
|
Dr. Apurbalal Senapati
Proceedings of the 36th Pacific Asia Conference on Language, Information and Computation
2020
Technical Domain Identification using word2vec and BiLSTM
Koyel Ghosh
|
Dr. Apurbalal Senapati
|
Dr. Ranjan Maity
Proceedings of the 17th International Conference on Natural Language Processing (ICON): TechDOfication 2020 Shared Task
Coarse-grained and Fine-grained classification tasks are mostly based on sentiment or basic emotion analysis. Now, switching from emotion and sentiment analysis to another domain, in this paper, we are going to work on technical domain identification. The task is to identify the technical domain of a given English text. In the case of Coarse-grained domain classification, such a piece of text provides information about specific Coarse-grained technical domains like Computer Science, Physics, Math, etc, and in Fine-grained domain classification, Fine-grained subdomains for Computer science domain, it can be like Artificial Intelligence, Algorithm, Computer Architecture, Computer Networks, Database Management system, etc. To do the task, Word2Vec skip-gram model is used for word embedding, later, applied the Bidirectional Long Short Term memory (BiLSTM) model to classify Coarse-grained domains and Fine-grained sub-domains. To evaluate the performance of the approached model accuracy, precision, recall, and F1-score have been applied.
Search