Elise Bertin-Lemée


2023

pdf bib
Example-Based Machine Translation from Textto a Hierarchical Representation of Sign Language
Elise Bertin-Lemée | Annelies Braffort | Camille Challant | Claire Danet | Michael Filhol
Proceedings of the 24th Annual Conference of the European Association for Machine Translation

This article presents an original method for Text-to-Sign Translation. It compensates data scarcity using a domain-specific parallel corpus of alignments between text and hierarchical formal descriptions of Sign Language videos. Based on the detection of similarities present in the source text, the proposed algorithm recursively exploits matches and substitutions of aligned segments to build multiple candidate translations for a novel statement. This helps preserving Sign Language structures as much as possible before falling back on literal translations too quickly, in a generative way. The resulting translations are in the form of AZee expressions, designed to be used as input to avatar synthesis systems. We present a test set tailored to showcase its potential for expressiveness and generation of idiomatic target language, and observed limitations. This work finally opens prospects on how to evaluate this kind of translation.

pdf bib
Traduction à base d’exemples du texte vers une représentation hiérarchique de la langue des signes
Elise Bertin-Lemée | Annelies Braffort | Camille Challant | Claire Danet | Michael Filhol
Actes de CORIA-TALN 2023. Actes de la 30e Conférence sur le Traitement Automatique des Langues Naturelles (TALN), volume 4 : articles déjà soumis ou acceptés en conférence internationale

Cet article présente une expérimentation de traduction automatique de texte vers la langue des signes (LS). Comme nous ne disposons pas de corpus aligné de grande taille, nous avons exploré une approche à base d’exemples, utilisant AZee, une représentation intermédiaire du discours en LS sous la forme d’expressions hiérarchisées

2022

pdf bib
Robust Translation of French Live Speech Transcripts
Elise Bertin-Lemée | Guillaume Klein | Josep Crego | Jean Senellart
Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas (Volume 2: Users and Providers Track and Government Track)

Despite a narrowed performance gap with direct approaches, cascade solutions, involving automatic speech recognition (ASR) and machine translation (MT) are still largely employed in speech translation (ST). Direct approaches employing a single model to translate the input speech signal suffer from the critical bottleneck of data scarcity. In addition, multiple industry applications display speech transcripts alongside translations, making cascade approaches more realistic and practical. In the context of cascaded simultaneous ST, we propose several solutions to adapt a neural MT network to take as input the transcripts output by an ASR system. Adaptation is achieved by enriching speech transcripts and MT data sets so that they more closely resemble each other, thereby improving the system robustness to error propagation and enhancing result legibility for humans. We address aspects such as sentence boundaries, capitalisation, punctuation, hesitations, repetitions, homophones, etc. while taking into account the low latency requirement of simultaneous ST systems.

pdf bib
Joint Generation of Captions and Subtitles with Dual Decoding
Jitao Xu | François Buet | Josep Crego | Elise Bertin-Lemée | François Yvon
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)

As the amount of audio-visual content increases, the need to develop automatic captioning and subtitling solutions to match the expectations of a growing international audience appears as the only viable way to boost throughput and lower the related post-production costs. Automatic captioning and subtitling often need to be tightly intertwined to achieve an appropriate level of consistency and synchronization with each other and with the video signal. In this work, we assess a dual decoding scheme to achieve a strong coupling between these two tasks and show how adequacy and consistency are increased, with virtually no additional cost in terms of model size and training complexity.

pdf bib
Rosetta-LSF: an Aligned Corpus of French Sign Language and French for Text-to-Sign Translation
Elise Bertin-Lemée | Annelies Braffort | Camille Challant | Claire Danet | Boris Dauriac | Michael Filhol | Emmanuella Martinod | Jérémie Segouat
Proceedings of the Thirteenth Language Resources and Evaluation Conference

This article presents a new French Sign Language (LSF) corpus called “Rosetta-LSF”. It was created to support future studies on the automatic translation of written French into LSF, rendered through the animation of a virtual signer. An overview of the field highlights the importance of a quality representation of LSF. In order to obtain quality animations understandable by signers, it must surpass the simple “gloss transcription” of the LSF lexical units to use in the discourse. To achieve this, we designed a corpus composed of four types of aligned data, and evaluated its usability. These are: news headlines in French, translations of these headlines into LSF in the form of videos showing animations of a virtual signer, gloss annotations of the “traditional” type—although including additional information on the context in which each gestural unit is performed as well as their potential for adaptation to another context—and AZee representations of the videos, i.e. formal expressions capturing the necessary and sufficient linguistic information. This article describes this data, exhibiting an example from the corpus. It is available online for public research.

pdf bib
Example-based Multilinear Sign Language Generation from a Hierarchical Representation
Boris Dauriac | Annelies Braffort | Elise Bertin-Lemée
Proceedings of the 7th International Workshop on Sign Language Translation and Avatar Technology: The Junction of the Visual and the Textual: Challenges and Perspectives

This article presents an original method for automatic generation of sign language (SL) content by means of the animation of an avatar, with the aim of creating animations that respect as much as possible linguistic constraints while keeping bio-realistic properties. This method is based on the use of a domain-specific bilingual corpus richly annotated with timed alignments between SL motion capture data, text and hierarchical expressions from the framework called AZee at subsentential level. Animations representing new SL content are built from blocks of animations present in the corpus and adapted to the context if necessary. A smart blending approach has been designed that allows the concatenation, replacement and adaptation of original animation blocks. This approach has been tested on a tailored testset to show as a proof of concept its potential in comprehensibility and fluidity of the animation, as well as its current limits.