Eric Zelikman
2023
Generating and Evaluating Tests for K-12 Students with Language Model Simulations: A Case Study on Sentence Reading Efficiency
Eric Zelikman
|
Wanjing Ma
|
Jasmine Tran
|
Diyi Yang
|
Jason Yeatman
|
Nick Haber
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Developing an educational test can be expensive and time-consuming, as each item must be written by experts and then evaluated by collecting hundreds of student responses. Moreover, many tests require multiple distinct sets of questions administered throughout the school year to closely monitor students’ progress, known as parallel tests. In this study, we focus on tests of silent sentence reading efficiency, used to assess students’ reading ability over time. To generate high-quality parallel tests, we propose to fine-tune large language models (LLMs) to simulate how previous students would have responded to unseen items. With these simulated responses, we can estimate each item’s difficulty and ambiguity. We first use GPT-4 to generate new test items following a list of expert-developed rules and then apply a fine-tuned LLM to filter the items based on criteria from psychological measurements. We also propose an optimal-transport-inspired technique for generating parallel tests and show the generated tests closely correspond to the original test’s difficulty and reliability based on crowdworker responses. Our evaluation of a generated test with 234 students from grades 2 to 8 produces test scores highly correlated (r=0.93) to those of a standard test form written by human experts and evaluated across thousands of K-12 students.
2022
Context Matters for Image Descriptions for Accessibility: Challenges for Referenceless Evaluation Metrics
Elisa Kreiss
|
Cynthia Bennett
|
Shayan Hooshmand
|
Eric Zelikman
|
Meredith Ringel Morris
|
Christopher Potts
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Few images on the Web receive alt-text descriptions that would make them accessible to blind and low vision (BLV) users. Image-based NLG systems have progressed to the point where they can begin to address this persistent societal problem, but these systems will not be fully successful unless we evaluate them on metrics that guide their development correctly. Here, we argue against current referenceless metrics – those that don’t rely on human-generated ground-truth descriptions – on the grounds that they do not align with the needs of BLV users. The fundamental shortcoming of these metrics is that they do not take context into account, whereas contextual information is highly valued by BLV users. To substantiate these claims, we present a study with BLV participants who rated descriptions along a variety of dimensions. An in-depth analysis reveals that the lack of context-awareness makes current referenceless metrics inadequate for advancing image accessibility. As a proof-of-concept, we provide a contextual version of the referenceless metric CLIPScore which begins to address the disconnect to the BLV data.
Search
Fix data
Co-authors
- Cynthia Bennett 1
- Nick Haber 1
- Shayan Hooshmand 1
- Elisa Kreiss 1
- Wanjing Ma 1
- show all...