Ethan Zhou
2018
They Exist! Introducing Plural Mentions to Coreference Resolution and Entity Linking
Ethan Zhou
|
Jinho D. Choi
Proceedings of the 27th International Conference on Computational Linguistics
This paper analyzes arguably the most challenging yet under-explored aspect of resolution tasks such as coreference resolution and entity linking, that is the resolution of plural mentions. Unlike singular mentions each of which represents one entity, plural mentions stand for multiple entities. To tackle this aspect, we take the character identification corpus from the SemEval 2018 shared task that consists of entity annotation for singular mentions, and expand it by adding annotation for plural mentions. We then introduce a novel coreference resolution algorithm that selectively creates clusters to handle both singular and plural mentions, and also a deep learning-based entity linking model that jointly handles both types of mentions through multi-task learning. Adjusted evaluation metrics are proposed for these tasks as well to handle the uniqueness of plural mentions. Our experiments show that the new coreference resolution and entity linking models significantly outperform traditional models designed only for singular mentions. To the best of our knowledge, this is the first time that plural mentions are thoroughly analyzed for these two resolution tasks.
2017
Robust Coreference Resolution and Entity Linking on Dialogues: Character Identification on TV Show Transcripts
Henry Y. Chen
|
Ethan Zhou
|
Jinho D. Choi
Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017)
This paper presents a novel approach to character identification, that is an entity linking task that maps mentions to characters in dialogues from TV show transcripts. We first augment and correct several cases of annotation errors in an existing corpus so the corpus is clearer and cleaner for statistical learning. We also introduce the agglomerative convolutional neural network that takes groups of features and learns mention and mention-pair embeddings for coreference resolution. We then propose another neural model that employs the embeddings learned and creates cluster embeddings for entity linking. Our coreference resolution model shows comparable results to other state-of-the-art systems. Our entity linking model significantly outperforms the previous work, showing the F1 score of 86.76% and the accuracy of 95.30% for character identification.