Faizan E Mustafa


2024

pdf bib
Leveraging Wikidata for Biomedical Entity Linking in a Low-Resource Setting: A Case Study for German
Faizan E Mustafa | Corina Dima | Juan Ochoa | Steffen Staab
Proceedings of the 6th Clinical Natural Language Processing Workshop

Biomedical Entity Linking (BEL) is a challenging task for low-resource languages, due to the lack of appropriate resources: datasets, knowledge bases (KBs), and pre-trained models. In this paper, we propose an approach to create a biomedical knowledge base for German BEL using UMLS information from Wikidata, that provides good coverage and can be easily extended to further languages. As a further contribution, we adapt several existing approaches for use in the German BEL setup, and report on their results. The chosen methods include a sparse model using character n-grams, a multilingual biomedical entity linker, and two general-purpose text retrieval models. Our results show that a language-specific KB that provides good coverage leads to most improvement in entity linking performance, irrespective of the used model. The finetuned German BEL model, newly created UMLSWikidata KB as well as the code to reproduce our results are publicly available.

2023

pdf bib
Annotating PubMed Abstracts with MeSH Headings using Graph Neural Network
Faizan E Mustafa | Rafika Boutalbi | Anastasiia Iurshina
Proceedings of the Fourth Workshop on Insights from Negative Results in NLP

The number of scientific publications in the biomedical domain is continuously increasing with time. An efficient system for indexing these publications is required to make the information accessible according to the user’s information needs. Task 10a of the BioASQ challenge aims to classify PubMed articles according to the MeSH ontology so that new publications can be grouped with similar preexisting publications in the field without the assistance of time-consuming and costly annotations by human annotators. In this work, we use Graph Neural Network (GNN) in the link prediction setting to exploit potential graph-structured information present in the dataset which could otherwise be neglected by transformer-based models. Additionally, we provide error analysis and a plausible reason for the substandard performance achieved by GNN.