Felix Naumann
2020
Discovering Biased News Articles Leveraging Multiple Human Annotations
Konstantina Lazaridou
|
Alexander Löser
|
Maria Mestre
|
Felix Naumann
Proceedings of the Twelfth Language Resources and Evaluation Conference
Unbiased and fair reporting is an integral part of ethical journalism. Yet, political propaganda and one-sided views can be found in the news and can cause distrust in media. Both accidental and deliberate political bias affect the readers and shape their views. We contribute to a trustworthy media ecosystem by automatically identifying politically biased news articles. We introduce novel corpora annotated by two communities, i.e., domain experts and crowd workers, and we also consider automatic article labels inferred by the newspapers’ ideologies. Our goal is to compare domain experts to crowd workers and also to prove that media bias can be detected automatically. We classify news articles with a neural network and we also improve our performance in a self-supervised manner.
2014
BEL: Bagging for Entity Linking
Zhe Zuo
|
Gjergji Kasneci
|
Toni Gruetze
|
Felix Naumann
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers
Search
Fix data
Co-authors
- Toni Gruetze 1
- Gjergji Kasneci 1
- Konstantina Lazaridou 1
- Alexander Löser 1
- Maria Mestre 1
- show all...
- Zhe Zuo 1