Foaad Khosmood


2024

pdf bib
Exploring Description-Augmented Dataless Intent Classification
Ruoyu Hu | Foaad Khosmood | Abbas Edalat
Proceedings of the 6th Workshop on NLP for Conversational AI (NLP4ConvAI 2024)

In this work, we introduce several schemes to leverage description-augmented embedding similarity for dataless intent classification using current state-of-the-art (SOTA) text embedding models. We report results of our methods on four commonly used intent classification datasets and compare against previous works of a similar nature. Our work shows promising results for dataless classification scaling to a large number of unseen intents. We show competitive results and significant improvements (+6.12% Avg.) over strong zero-shot baselines, all without training on labelled or task-specific data. Furthermore, we provide qualitative error analysis of the shortfalls of this methodology to help guide future research in this area.

pdf bib
A Two-Model Approach for Humour Style Recognition
Mary Ogbuka Kenneth | Foaad Khosmood | Abbas Edalat
Proceedings of the 4th International Conference on Natural Language Processing for Digital Humanities

Humour, a fundamental aspect of human communication, manifests itself in various styles that significantly impact social interactions and mental health. Recognising different humour styles poses challenges due to the lack of established datasets and machine learning (ML) models. To address this gap, we present a new text dataset for humour style recognition, comprising 1463 instances across four styles (self-enhancing, self-deprecating, affiliative, and aggressive) and non-humorous text, with lengths ranging from 4 to 229 words. Our research employs various computational methods, including classic machine learning classifiers, text embedding models, and DistilBERT, to establish baseline performance. Additionally, we propose a two-model approach to enhance humour style recognition, particularly in distinguishing between affiliative and aggressive styles. Our method demonstrates an 11.61% improvement in f1-score for affiliative humour classification, with consistent improvements in the 14 models tested. Our findings contribute to the computational analysis of humour in text, offering new tools for studying humour in literature, social media, and other textual sources.