Franck Vermet
2025
Training LayoutLM from Scratch for Efficient Named-Entity Recognition in the Insurance Domain
Benno Uthayasooriyar
|
Antoine Ly
|
Franck Vermet
|
Caio Corro
Proceedings of the Joint Workshop of the 9th Financial Technology and Natural Language Processing (FinNLP), the 6th Financial Narrative Processing (FNP), and the 1st Workshop on Large Language Models for Finance and Legal (LLMFinLegal)
Generic pre-trained neural networks may struggle to produce good results in specialized domains like finance and insurance. This is due to a domain mismatch between training data and downstream tasks, as in-domain data are often scarce due to privacy constraints. In this work, we compare different pre-training strategies for LayoutLM. We show that using domain-relevant documents improves results on a named-entity recognition (NER) problem using a novel dataset of anonymized insurance-related financial documents called PAYSLIPS. Moreover, we show that we can achieve competitive results using a smaller and faster model.