Frederick Bane


2020

pdf bib
Estimation vs Metrics: is QE Useful for MT Model Selection?
Anna Zaretskaya | José Conceição | Frederick Bane
Proceedings of the 22nd Annual Conference of the European Association for Machine Translation

This paper presents a case study of applying machine translation quality estimation (QE) for the purpose of machine translation (MT) engine selection. The goal is to understand how well the QE predictions correlate with several MT evaluation metrics (automatic and human). Our findings show that our industry-level QE system is not reliable enough for MT selection when the MT systems have similar performance. We suggest that QE can be used with more success for other tasks relevant for translation industry such as risk prevention.