Gaeul Kwon


2024

pdf bib
Tutor-ICL: Guiding Large Language Models for Improved In-Context Learning Performance
Ikhyun Cho | Gaeul Kwon | Julia Hockenmaier
Findings of the Association for Computational Linguistics: EMNLP 2024

There has been a growing body of work focusing on the in-context learning (ICL) abilities of large language models (LLMs). However, it is an open question how effective ICL can be. This paper presents Tutor-ICL, a simple prompting method for classification tasks inspired by how effective instructors might engage their students in learning a task. Specifically, we propose presenting exemplar answers in a *comparative format* rather than the traditional single-answer format. We also show that including the test instance before the exemplars can improve performance, making it easier for LLMs to focus on relevant exemplars. Lastly, we include a summarization step before attempting the test, following a common human practice. Experiments on various classification tasks, conducted across both decoder-only LLMs (Llama 2, 3) and encoder-decoder LLMs (Flan-T5-XL, XXL), show that Tutor-ICL consistently boosts performance, achieving up to a 13.76% increase in accuracy.