Gargi Roy


2023

pdf bib
Attentive Fusion: A Transformer-based Approach to Multimodal Hate Speech Detection
Atanu Mandal | Gargi Roy | Amit Barman | Indranil Dutta | Sudip Kumar Naskar
Proceedings of the 20th International Conference on Natural Language Processing (ICON)

With the recent surge and exponential growth of social media usage, scrutinizing social media content for the presence of any hateful content is of utmost importance. Researchers have been diligently working since the past decade on distinguishing between content that promotes hatred and content that does not. Traditionally, the main focus has been on analyzing textual content. However, recent research attempts have also commenced into the identification of audio-based content. Nevertheless, studies have shown that relying solely on audio or text-based content may be ineffective, as recent upsurge indicates that individuals often employ sarcasm in their speech and writing. To overcome these challenges, we present an approach to identify whether a speech promotes hate or not utilizing both audio and textual representations. Our methodology is based on the Transformer framework that incorporates both audio and text sampling, accompanied by our very own layer called “Attentive Fusion”. The results of our study surpassed previous stateof-the-art techniques, achieving an impressive macro F1 score of 0.927 on the Test Set.

2020

pdf bib
Learning Domain Terms - Empirical Methods to Enhance Enterprise Text Analytics Performance
Gargi Roy | Lipika Dey | Mohammad Shakir | Tirthankar Dasgupta
Proceedings of the 28th International Conference on Computational Linguistics: Industry Track

Performance of standard text analytics algorithms are known to be substantially degraded on consumer generated data, which are often very noisy. These algorithms also do not work well on enterprise data which has a very different nature from News repositories, storybooks or Wikipedia data. Text cleaning is a mandatory step which aims at noise removal and correction to improve performance. However, enterprise data need special cleaning methods since it contains many domain terms which appear to be noise against a standard dictionary, but in reality are not so. In this work we present detailed analysis of characteristics of enterprise data and suggest unsupervised methods for cleaning these repositories after domain terms have been automatically segregated from true noise terms. Noise terms are thereafter corrected in a contextual fashion. The effectiveness of the method is established through careful manual evaluation of error corrections over several standard data sets, including those available for hate speech detection, where there is deliberate distortion to avoid detection. We also share results to show enhancement in classification accuracy after noise correction.