2024
pdf
bib
abs
Improving Quotation Attribution with Fictional Character Embeddings
Gaspard Michel
|
Elena V. Epure
|
Romain Hennequin
|
Christophe Cerisara
Findings of the Association for Computational Linguistics: EMNLP 2024
Humans naturally attribute utterances of direct speech to their speaker in literary works.When attributing quotes, we process contextual information but also access mental representations of characters that we build and revise throughout the narrative. Recent methods to automatically attribute such utterances have explored simulating human logic with deterministic rules or learning new implicit rules with neural networks when processing contextual information.However, these systems inherently lack character representations, which often leads to errors in more challenging examples of attribution: anaphoric and implicit quotes.In this work, we propose to augment a popular quotation attribution system, BookNLP, with character embeddings that encode global stylistic information of characters derived from an off-the-shelf stylometric model, Universal Authorship Representation (UAR).We create DramaCV, a corpus of English drama plays from the 15th to 20th century that we automatically annotate for Authorship Verification of fictional characters utterances, and release two versions of UAR trained on DramaCV, that are tailored for literary characters analysis.Then, through an extensive evaluation on 28 novels, we show that combining BookNLP’s contextual information with our proposed global character embeddings improves the identification of speakers for anaphoric and implicit quotes, reaching state-of-the-art performance.Code and data can be found at https://github.com/deezer/character_embeddings_qa.
pdf
bib
abs
Distinguishing Fictional Voices: a Study of Authorship Verification Models for Quotation Attribution
Gaspard Michel
|
Elena Epure
|
Romain Hennequin
|
Christophe Cerisara
Proceedings of the 8th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2024)
Recent approaches to automatically detect the speaker of an utterance of direct speech often disregard general information about characters in favor of local information found in the context, such as surrounding mentions of entities. In this work, we explore stylistic representations of characters built by encoding their quotes with off-the-shelf pretrained Authorship Verification models in a large corpus of English novels (the Project Dialogism Novel Corpus). Results suggest that the combination of stylistic and topical information captured in some of these models accurately distinguish characters among each other, but does not necessarily improve over semantic-only models when attributing quotes. However, these results vary across novels and more investigation of stylometric models particularly tailored for literary texts and the study of characters should be conducted.
2023
pdf
bib
abs
Automatic Annotation of Direct Speech in Written French Narratives
Noé Durandard
|
Viet Anh Tran
|
Gaspard Michel
|
Elena Epure
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The automatic annotation of direct speech (AADS) in written text has been often used in computational narrative understanding. Methods based on either rules or deep neural networks have been explored, in particular for English or German languages. Yet, for French, our target language, not many works exist. Our goal is to create a unified framework to design and evaluate AADS models in French. For this, we consolidated the largest-to-date French narrative dataset annotated with DS per word; we adapted various baselines for sequence labelling or from AADS in other languages; and we designed and conducted an extensive evaluation focused on generalisation. Results show that the task still requires substantial efforts and emphasise characteristics of each baseline. Although this framework could be improved, it is a step further to encourage more research on the topic.