George A. Vouros


2010

pdf bib
United we Stand: Improving Sentiment Analysis by Joining Machine Learning and Rule Based Methods
Vassiliki Rentoumi | Stefanos Petrakis | Manfred Klenner | George A. Vouros | Vangelis Karkaletsis
Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)

In the past, we have succesfully used machine learning approaches for sentiment analysis. In the course of those experiments, we observed that our machine learning method, although able to cope well with figurative language could not always reach a certain decision about the polarity orientation of sentences, yielding erroneous evaluations. We support the conjecture that these cases bearing mild figurativeness could be better handled by a rule-based system. These two systems, acting complementarily, could bridge the gap between machine learning and rule-based approaches. Experimental results using the corpus of the Affective Text Task of SemEval ’07, provide evidence in favor of this direction.

2009

pdf bib
Sentiment Analysis of Figurative Language using a Word Sense Disambiguation Approach
Vassiliki Rentoumi | George Giannakopoulos | Vangelis Karkaletsis | George A. Vouros
Proceedings of the International Conference RANLP-2009

1993

bib
The use of terminological knowledge bases in software localisation
Vangelis Karkaletsis | Constantine D. Spyropoulos | George A. Vouros
Third International EAMT Workshop: Machine Translation and the Lexicon

This paper describes the work that was undertaken in the Glossasoft project in the area of terminology management. Some of the draw-backs of existing terminology management systems are outlined and an alternative approach to maintaining terminological data is proposed. The approach which we advocate relies on knowledge-based representation techniques. These are used to model conceptual knowledge about the terms included in the database, general knowledge about the subject domain, application-specific knowledge, and - of course - language-specific terminological knowledge. We consider the multifunctionality of the proposed architecture to be one of its major advantages. To illustrate this, we outline how the knowledge representation scheme, which we suggest, could be drawn upon in message generation and machine-assisted translation.