George-Alexandru Vlad


2020

pdf bib
UPB at SemEval-2020 Task 8: Joint Textual and Visual Modeling in a Multi-Task Learning Architecture for Memotion Analysis
George-Alexandru Vlad | George-Eduard Zaharia | Dumitru-Clementin Cercel | Costin Chiru | Stefan Trausan-Matu
Proceedings of the Fourteenth Workshop on Semantic Evaluation

Users from the online environment can create different ways of expressing their thoughts, opinions, or conception of amusement. Internet memes were created specifically for these situations. Their main purpose is to transmit ideas by using combinations of images and texts such that they will create a certain state for the receptor, depending on the message the meme has to send. These posts can be related to various situations or events, thus adding a funny side to any circumstance our world is situated in. In this paper, we describe the system developed by our team for SemEval-2020 Task 8: Memotion Analysis. More specifically, we introduce a novel system to analyze these posts, a multimodal multi-task learning architecture that combines ALBERT for text encoding with VGG-16 for image representation. In this manner, we show that the information behind them can be properly revealed. Our approach achieves good performance on each of the three subtasks of the current competition, ranking 11th for Subtask A (0.3453 macro F1-score), 1st for Subtask B (0.5183 macro F1-score), and 3rd for Subtask C (0.3171 macro F1-score) while exceeding the official baseline results by high margins.

pdf bib
UPB at SemEval-2020 Task 9: Identifying Sentiment in Code-Mixed Social Media Texts Using Transformers and Multi-Task Learning
George-Eduard Zaharia | George-Alexandru Vlad | Dumitru-Clementin Cercel | Traian Rebedea | Costin Chiru
Proceedings of the Fourteenth Workshop on Semantic Evaluation

Sentiment analysis is a process widely used in opinion mining campaigns conducted today. This phenomenon presents applications in a variety of fields, especially in collecting information related to the attitude or satisfaction of users concerning a particular subject. However, the task of managing such a process becomes noticeably more difficult when it is applied in cultures that tend to combine two languages in order to express ideas and thoughts. By interleaving words from two languages, the user can express with ease, but at the cost of making the text far less intelligible for those who are not familiar with this technique, but also for standard opinion mining algorithms. In this paper, we describe the systems developed by our team for SemEval-2020 Task 9 that aims to cover two well-known code-mixed languages: Hindi-English and Spanish-English. We intend to solve this issue by introducing a solution that takes advantage of several neural network approaches, as well as pre-trained word embeddings. Our approach (multlingual BERT) achieves promising performance on the Hindi-English task, with an average F1-score of 0.6850, registered on the competition leaderboard, ranking our team 16 out of 62 participants. For the Spanish-English task, we obtained an average F1-score of 0.7064 ranking our team 17th out of 29 participants by using another multilingual Transformer-based model, XLM-RoBERTa.

2019

pdf bib
Sentence-Level Propaganda Detection in News Articles with Transfer Learning and BERT-BiLSTM-Capsule Model
George-Alexandru Vlad | Mircea-Adrian Tanase | Cristian Onose | Dumitru-Clementin Cercel
Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda

In recent years, the need for communication increased in online social media. Propaganda is a mechanism which was used throughout history to influence public opinion and it is gaining a new dimension with the rising interest of online social media. This paper presents our submission to NLP4IF-2019 Shared Task SLC: Sentence-level Propaganda Detection in news articles. The challenge of this task is to build a robust binary classifier able to provide corresponding propaganda labels, propaganda or non-propaganda. Our model relies on a unified neural network, which consists of several deep leaning modules, namely BERT, BiLSTM and Capsule, to solve the sentencelevel propaganda classification problem. In addition, we take a pre-training approach on a somewhat similar task (i.e., emotion classification) improving results against the cold-start model. Among the 26 participant teams in the NLP4IF-2019 Task SLC, our solution ranked 12th with an F1-score 0.5868 on the official test data. Our proposed solution indicates promising results since our system significantly exceeds the baseline approach of the organizers by 0.1521 and is slightly lower than the winning system by 0.0454.