George Mikros


2025

pdf bib
Proceedings of the 1stWorkshop on GenAI Content Detection (GenAIDetect)
Firoj Alam | Preslav Nakov | Nizar Habash | Iryna Gurevych | Shammur Chowdhury | Artem Shelmanov | Yuxia Wang | Ekaterina Artemova | Mucahid Kutlu | George Mikros
Proceedings of the 1stWorkshop on GenAI Content Detection (GenAIDetect)

pdf bib
GenAI Content Detection Task 2: AI vs. Human – Academic Essay Authenticity Challenge
Shammur Absar Chowdhury | Hind Almerekhi | Mucahid Kutlu | Kaan Efe Keleş | Fatema Ahmad | Tasnim Mohiuddin | George Mikros | Firoj Alam
Proceedings of the 1stWorkshop on GenAI Content Detection (GenAIDetect)

This paper presents a comprehensive overview of the first edition of the Academic Essay Authenticity Challenge, organized as part of the GenAI Content Detection shared tasks collocated with COLING 2025. This challenge focuses on detecting machine-generated vs human-authored essays for academic purposes. The task is defined as follows: “Given an essay, identify whether it is generated by a machine or authored by a human.” The challenge involves two languages: English and Arabic. During the evaluation phase, 25 teams submitted systems for English and 21 teams for Arabic, reflecting substantial interest in the task. Finally, five teams submitted system description papers. The majority of submissions utilized fine-tuned transformer-based models, with one team employing Large Language Models (LLMs) such as Llama 2 and Llama 3. This paper outlines the task formulation, details the dataset construction process, and explains the evaluation framework. Additionally, we present a summary of the approaches adopted by participating teams. Nearly all submitted systems outperformed the n-gram-based baseline, with the top-performing systems achieving F1 scores exceeding 0.98 for both languages, indicating significant progress in the detection of machine-generated text.

2024

pdf bib
Establishing Control Corpora for Depression Detection in Modern Greek: Methodological Insights
Vivian Stamou | George Mikros | George Markopoulos | Spyridoula Varlokosta
Proceedings of the Fifth Workshop on Resources and ProcessIng of linguistic, para-linguistic and extra-linguistic Data from people with various forms of cognitive/psychiatric/developmental impairments @LREC-COLING 2024

This paper presents a methodological approach for establishing control corpora in the context of depression detection in the Modern Greek language. We discuss various methods used to create control corpora, focusing on the challenge of selecting representative samples from the general population when the target reference is the depressed population. Our approach includes traditional random selection among Twitter users, as well as an innovative method for creating topic-oriented control corpora. Through this study, we provide insights into the development of control corpora, offering valuable considerations for researchers working on similar projects in linguistic analysis and mental health studies. In addition, we identify several dominant topics in the depressed population such as religion, sentiments, health and digestion, which seem to align with findings consistently reported in the literature

2002

pdf bib
Quantitative parameters in corpus design: Estimating the optimum text size in Modern Greek language
George Mikros
Proceedings of the Third International Conference on Language Resources and Evaluation (LREC’02)

2000

pdf bib
Modern Greek Corpus Taxonomy
George Mikros | George Carayannis
Proceedings of the Second International Conference on Language Resources and Evaluation (LREC’00)