Autoregressive language models (LMs) map token sequences to probabilities. The usual practice for computing the probability of any character string (e.g. English sentences) is to first transform it into a sequence of tokens that is scored by the model. However, there are exponentially many token sequences that represent any given string. To truly compute the probability of a string one should marginalize over all tokenizations, which is typically intractable. Here, we analyze whether the practice of ignoring the marginalization is justified. To this end, we devise an importance-sampling-based algorithm that allows us to compute estimates of the marginal probabilities and compare them to the default procedure in a range of state-of-the-art models and datasets. Our results show that the gap in log-likelihood is no larger than 0.5% in most cases, but that it becomes more pronounced for data with long complex words.
Pre-trained language models and other generative models have revolutionized NLP and beyond. However, these models tend to reproduce undesirable biases present in their training data. Also, they may overlook patterns that are important but challenging to capture. To address these limitations, researchers have introduced distributional control techniques. These techniques, not limited to language, allow controlling the prevalence (i.e. expectations) of any features of interest in the model’s outputs. Despite their potential, the widespread adoption of these techniques has been hindered by the difficulty in adapting the complex, disconnected code. Here, we present disco, an open-source Python library that brings these techniques to the broader public
Recent work has shown that LSTMs trained on a generic language modeling objective capture syntax-sensitive generalizations such as long-distance number agreement. We have however no mechanistic understanding of how they accomplish this remarkable feat. Some have conjectured it depends on heuristics that do not truly take hierarchical structure into account. We present here a detailed study of the inner mechanics of number tracking in LSTMs at the single neuron level. We discover that long-distance number information is largely managed by two “number units”. Importantly, the behaviour of these units is partially controlled by other units independently shown to track syntactic structure. We conclude that LSTMs are, to some extent, implementing genuinely syntactic processing mechanisms, paving the way to a more general understanding of grammatical encoding in LSTMs.
There has been considerable attention devoted to models that learn to jointly infer an expression’s syntactic structure and its semantics. Yet, Nangia and Bowman (2018) has recently shown that the current best systems fail to learn the correct parsing strategy on mathematical expressions generated from a simple context-free grammar. In this work, we present a recursive model inspired by Choi et al. (2018) that reaches near perfect accuracy on this task. Our model is composed of two separated modules for syntax and semantics. They are cooperatively trained with standard continuous and discrete optimisation schemes. Our model does not require any linguistic structure for supervision, and its recursive nature allows for out-of-domain generalisation. Additionally, our approach performs competitively on several natural language tasks, such as Natural Language Inference and Sentiment Analysis.
Learning to follow human instructions is a long-pursued goal in artificial intelligence. The task becomes particularly challenging if no prior knowledge of the employed language is assumed while relying only on a handful of examples to learn from. Work in the past has relied on hand-coded components or manually engineered features to provide strong inductive biases that make learning in such situations possible. In contrast, here we seek to establish whether this knowledge can be acquired automatically by a neural network system through a two phase training procedure: A (slow) offline learning stage where the network learns about the general structure of the task and a (fast) online adaptation phase where the network learns the language of a new given speaker. Controlled experiments show that when the network is exposed to familiar instructions but containing novel words, the model adapts very efficiently to the new vocabulary. Moreover, even for human speakers whose language usage can depart significantly from our artificial training language, our network can still make use of its automatically acquired inductive bias to learn to follow instructions more effectively.
Although much effort has recently been devoted to training high-quality sentence embeddings, we still have a poor understanding of what they are capturing. “Downstream” tasks, often based on sentence classification, are commonly used to evaluate the quality of sentence representations. The complexity of the tasks makes it however difficult to infer what kind of information is present in the representations. We introduce here 10 probing tasks designed to capture simple linguistic features of sentences, and we use them to study embeddings generated by three different encoders trained in eight distinct ways, uncovering intriguing properties of both encoders and training methods.
Corpus-based distributional semantic models capture degrees of semantic relatedness among the words of very large vocabularies, but have problems with logical phenomena such as entailment, that are instead elegantly handled by model-theoretic approaches, which, in turn, do not scale up. We combine the advantages of the two views by inducing a mapping from distributional vectors of words (or sentences) into a Boolean structure of the kind in which natural language terms are assumed to denote. We evaluate this Boolean Distributional Semantic Model (BDSM) on recognizing entailment between words and sentences. The method achieves results comparable to a state-of-the-art SVM, degrades more gracefully when less training data are available and displays interesting qualitative properties.