Gondy Leroy
2024
APPLS: Evaluating Evaluation Metrics for Plain Language Summarization
Yue Guo
|
Tal August
|
Gondy Leroy
|
Trevor Cohen
|
Lucy Lu Wang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
While there has been significant development of models for Plain Language Summarization (PLS), evaluation remains a challenge. PLS lacks a dedicated assessment metric, and the suitability of text generation evaluation metrics is unclear due to the unique transformations involved (e.g., adding background explanations, removing jargon). To address these questions, our study introduces a granular meta-evaluation testbed, APPLS, designed to evaluate metrics for PLS. We identify four PLS criteria from previous work—informativeness, simplification, coherence, and faithfulness—and define a set of perturbations corresponding to these criteria that sensitive metrics should be able to detect. We apply these perturbations to extractive hypotheses for two PLS datasets to form our testbed. Using APPLS, we assess performance of 14 metrics, including automated scores, lexical features, and LLM prompt-based evaluations. Our analysis reveals that while some current metrics show sensitivity to specific criteria, no single method captures all four criteria simultaneously. We therefore recommend a suite of automated metrics be used to capture PLS quality along all relevant criteria. This work contributes the first meta-evaluation testbed for PLS and a comprehensive evaluation of existing metrics.
2020
AutoMeTS: The Autocomplete for Medical Text Simplification
Hoang Van
|
David Kauchak
|
Gondy Leroy
Proceedings of the 28th International Conference on Computational Linguistics
The goal of text simplification (TS) is to transform difficult text into a version that is easier to understand and more broadly accessible to a wide variety of readers. In some domains, such as healthcare, fully automated approaches cannot be used since information must be accurately preserved. Instead, semi-automated approaches can be used that assist a human writer in simplifying text faster and at a higher quality. In this paper, we examine the application of autocomplete to text simplification in the medical domain. We introduce a new parallel medical data set consisting of aligned English Wikipedia with Simple English Wikipedia sentences and examine the application of pretrained neural language models (PNLMs) on this dataset. We compare four PNLMs (BERT, RoBERTa, XLNet, and GPT-2), and show how the additional context of the sentence to be simplified can be incorporated to achieve better results (6.17% absolute improvement over the best individual model). We also introduce an ensemble model that combines the four PNLMs and outperforms the best individual model by 2.1%, resulting in an overall word prediction accuracy of 64.52%.