Guangneng Hu
2021
TrNews: Heterogeneous User-Interest Transfer Learning for News Recommendation
Guangneng Hu
|
Qiang Yang
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume
We investigate how to solve the cross-corpus news recommendation for unseen users in the future. This is a problem where traditional content-based recommendation techniques often fail. Luckily, in real-world recommendation services, some publisher (e.g., Daily news) may have accumulated a large corpus with lots of consumers which can be used for a newly deployed publisher (e.g., Political news). To take advantage of the existing corpus, we propose a transfer learning model (dubbed as TrNews) for news recommendation to transfer the knowledge from a source corpus to a target corpus. To tackle the heterogeneity of different user interests and of different word distributions across corpora, we design a translator-based transfer-learning strategy to learn a representation mapping between source and target corpora. The learned translator can be used to generate representations for unseen users in the future. We show through experiments on real-world datasets that TrNews is better than various baselines in terms of four metrics. We also show that our translator is effective among existing transfer strategies.
2020
PrivNet: Safeguarding Private Attributes in Transfer Learning for Recommendation
Guangneng Hu
|
Qiang Yang
Findings of the Association for Computational Linguistics: EMNLP 2020
Transfer learning is an effective technique to improve a target recommender system with the knowledge from a source domain. Existing research focuses on the recommendation performance of the target domain while ignores the privacy leakage of the source domain. The transferred knowledge, however, may unintendedly leak private information of the source domain. For example, an attacker can accurately infer user demographics from their historical purchase provided by a source domain data owner. This paper addresses the above privacy-preserving issue by learning a privacy-aware neural representation by improving target performance while protecting source privacy. The key idea is to simulate the attacks during the training for protecting unseen users’ privacy in the future, modeled by an adversarial game, so that the transfer learning model becomes robust to attacks. Experiments show that the proposed PrivNet model can successfully disentangle the knowledge benefitting the transfer from leaking the privacy.
2019
Personalized Neural Embeddings for Collaborative Filtering with Text
Guangneng Hu
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
Collaborative filtering (CF) is a core technique for recommender systems. Traditional CF approaches exploit user-item relations (e.g., clicks, likes, and views) only and hence they suffer from the data sparsity issue. Items are usually associated with unstructured text such as article abstracts and product reviews. We develop a Personalized Neural Embedding (PNE) framework to exploit both interactions and words seamlessly. We learn such embeddings of users, items, and words jointly, and predict user preferences on items based on these learned representations. PNE estimates the probability that a user will like an item by two terms—behavior factors and semantic factors. On two real-world datasets, PNE shows better performance than four state-of-the-art baselines in terms of three metrics. We also show that PNE learns meaningful word embeddings by visualization.