Guozhou Zheng


2024

pdf bib
OceanGPT: A Large Language Model for Ocean Science Tasks
Zhen Bi | Ningyu Zhang | Yida Xue | Yixin Ou | Daxiong Ji | Guozhou Zheng | Huajun Chen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Ocean science, which delves into the oceans that are reservoirs of life and biodiversity, is of great significance given that oceans cover over 70% of our planet’s surface. Recently, advances in Large Language Models (LLMs) have transformed the paradigm in science. Despite the success in other domains, current LLMs often fall short in catering to the needs of domain experts like oceanographers, and the potential of LLMs for ocean science is under-explored. The intrinsic reason may be the immense and intricate nature of ocean data as well as the necessity for higher granularity and richness in knowledge. To alleviate these issues, we introduce OceanGPT, the first-ever LLM in the ocean domain, which is expert in various ocean science tasks. We propose DoInstruct, a novel framework to automatically obtain a large volume of ocean domain instruction data, which generates instructions based on multi-agent collaboration. Additionally, we construct the first oceanography benchmark, OceanBench, to evaluate the capabilities of LLMs in the ocean domain. Though comprehensive experiments, OceanGPT not only shows a higher level of knowledge expertise for oceans science tasks but also gains preliminary embodied intelligence capabilities in ocean technology.

pdf bib
EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models
Peng Wang | Ningyu Zhang | Bozhong Tian | Zekun Xi | Yunzhi Yao | Ziwen Xu | Mengru Wang | Shengyu Mao | Xiaohan Wang | Siyuan Cheng | Kangwei Liu | Yuansheng Ni | Guozhou Zheng | Huajun Chen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

Large Language Models (LLMs) usually suffer from knowledge cutoff or fallacy issues, which means they are unaware of unseen events or generate text with incorrect facts owing to outdated/noisy data. To this end, many knowledge editing approaches for LLMs have emerged – aiming to subtly inject/edit updated knowledge or adjust undesired behavior while minimizing the impact on unrelated inputs. Nevertheless, due to significant differences among various knowledge editing methods and the variations in task setups, there is no standard implementation framework available for the community, which hinders practitioners from applying knowledge editing to applications. To address these issues, we propose EasyEdit, an easy-to-use knowledge editing framework for LLMs. It supports various cutting-edge knowledge editing approaches and can be readily applied to many well-known LLMs such as T5, GPT-J, LlaMA, etc. Empirically, we report the knowledge editing results on LlaMA-2 with EasyEdit, demonstrating that knowledge editing surpasses traditional fine-tuning in terms of reliability and generalization. We have released the source code on GitHub, along with Google Colab tutorials and comprehensive documentation for beginners to get started. Besides, we present an online system for real-time knowledge editing, and a demo video.

pdf bib
EasyInstruct: An Easy-to-use Instruction Processing Framework for Large Language Models
Yixin Ou | Ningyu Zhang | Honghao Gui | Ziwen Xu | Shuofei Qiao | Runnan Fang | Lei Li | Zhen Bi | Guozhou Zheng | Huajun Chen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

In recent years, instruction tuning has gained increasing attention and emerged as a crucial technique to enhance the capabilities of Large Language Models (LLMs). To construct high-quality instruction datasets, many instruction processing approaches have been proposed, aiming to achieve a delicate balance between data quantity and data quality. Nevertheless, due to inconsistencies that persist among various instruction processing methods, there is no standard open-source instruction processing implementation framework available for the community, which hinders practitioners from further developing and advancing. To facilitate instruction processing research and development, we present EasyInstruct, an easy-to-use instruction processing framework for LLMs, which modularizes instruction generation, selection, and prompting, while also considering their combination and interaction. EasyInstruct is publicly released and actively maintained at Github, along with an online demo app and a demo video for quick-start, calling for broader research centered on instruction data and synthetic data.