Han-Yun Yeh


2017

pdf bib
NCTU-NTUT at IJCNLP-2017 Task 2: Deep Phrase Embedding using bi-LSTMs for Valence-Arousal Ratings Prediction of Chinese Phrases
Yen-Hsuan Lee | Han-Yun Yeh | Yih-Ru Wang | Yuan-Fu Liao
Proceedings of the IJCNLP 2017, Shared Tasks

In this paper, a deep phrase embedding approach using bi-directional long short-term memory (Bi-LSTM) is proposed to predict the valence-arousal ratings of Chinese words and phrases. It adopts a Chinese word segmentation frontend, a local order-aware word, a global phrase embedding representations and a deep regression neural network (DRNN) model. The performance of the proposed method was benchmarked by the IJCNLP 2017 shared task 2. According the official evaluation results, our best system achieved mean rank 6.5 among all 24 submissions.