Haobo Zhang


2025

pdf bib
Enhancing Reranking for Recommendation with LLMs through User Preference Retrieval
Haobo Zhang | Qiannan Zhu | Zhicheng Dou
Proceedings of the 31st International Conference on Computational Linguistics

Recently, large language models (LLMs) have shown the potential to enhance recommendations due to their sufficient knowledge and remarkable summarization ability. However, the existing LLM-powered recommendation may create redundant output, which generates irrelevant information about the user’s preferences on candidate items from user behavior sequences. To address the issues, we propose a framework UR4Rec that enhances reranking for recommendation with large language models through user preference retrieval. Specifically, UR4Rec develops a small transformer-based user preference retriever towards candidate items to build the bridge between LLMs and recommendation, which focuses on producing the essential knowledge through LLMs from user behavior sequences to enhance reranking for recommendation. Our experimental results on three real-world public datasets demonstrate the superiority of UR4Rec over existing baseline models.