Haoning Wu


2024

pdf bib
MatchTime: Towards Automatic Soccer Game Commentary Generation
Jiayuan Rao | Haoning Wu | Chang Liu | Yanfeng Wang | Weidi Xie
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Soccer is a globally popular sport with a vast audience, in this paper, we consider constructing an automatic soccer game commentary model to improve the audiences’ viewing experience. In general, we make the following contributions: *First*, observing the prevalent video-text misalignment in existing datasets, we manually annotate timestamps for 49 matches, establishing a more robust benchmark for soccer game commentary generation, termed as *SN-Caption-test-align*; *Second*, we propose a multi-modal temporal alignment pipeline to automatically correct and filter the existing dataset at scale, creating a higher-quality soccer game commentary dataset for training, denoted as *MatchTime*; *Third*, based on our curated dataset, we train an automatic commentary generation model, named **MatchVoice**. Extensive experiments and ablation studies have demonstrated the effectiveness of our alignment pipeline, and training model on the curated datasets achieves state-of-the-art performance for commentary generation, showcasing that better alignment can lead to significant performance improvements in downstream tasks.