Haowei Lin
2023
FLatS: Principled Out-of-Distribution Detection with Feature-Based Likelihood Ratio Score
Haowei Lin
|
Yuntian Gu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Detecting out-of-distribution (OOD) instances is crucial for NLP models in practical applications. Although numerous OOD detection methods exist, most of them are empirical. Backed by theoretical analysis, this paper advocates for the measurement of the “OOD-ness” of a test case x through the likelihood ratio between out-distribution Pout and in-distribution Pin. We argue that the state-of-the-art (SOTA) feature-based OOD detection methods, such as Maha and KNN, are suboptimal since they only estimate in-distribution density pin(x). To address this issue, we propose FLATS, a principled solution for OOD detection based on likelihood ratio. Moreover, we demonstrate that FLATS can serve as a general framework capable of enhancing other OOD detection methods by incorporating out-distribution density pout(x) estimation. Experiments show that FLATS establishes a new SOTA on popular benchmarks.
2022
Adapting a Language Model While Preserving its General Knowledge
Zixuan Ke
|
Yijia Shao
|
Haowei Lin
|
Hu Xu
|
Lei Shu
|
Bing Liu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Domain-adaptive pre-training (or DA-training for short), also known as post-training, aimsto train a pre-trained general-purpose language model (LM) using an unlabeled corpus of aparticular domain to adapt the LM so that end-tasks in the domain can give improved performances. However, existing DA-training methods are in some sense blind as they do not explicitly identify what knowledge in the LM should be preserved and what should be changed by the domain corpus. This paper shows that the existing methods are suboptimal and proposes a novel method to perform a more informed adaptation of the knowledge in the LM by (1) soft-masking the attention heads based on their importance to best preserve the general knowledge in the LM and (2) contrasting the representations of the general and the full (both general and domain knowledge) to learn an integrated representation with both general and domain-specific knowledge. Experimental results will demonstrate the effectiveness of the proposed approach.
Continual Training of Language Models for Few-Shot Learning
Zixuan Ke
|
Haowei Lin
|
Yijia Shao
|
Hu Xu
|
Lei Shu
|
Bing Liu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Recent work on applying large language models (LMs) achieves impressive performance in many NLP applications. Adapting or posttraining an LM using an unlabeled domain corpus can produce even better performance for end-tasks in the domain. This paper proposes the problem of continually extending an LM by incrementally post-train the LM with a sequence of unlabeled domain corpora to expand its knowledge without forgetting its previous skills. The goal is to improve the few-shot end-task learning in these domains. The resulting system is called CPT (Continual PostTraining), which to our knowledge, is the first continual post-training system. Experimental results verify its effectiveness.