Hector Allende-Cid

Also published as: Héctor Allende, Héctor Allende-Cid


2025

pdf bib
Robustness Evaluation of the German Extractive Question Answering Task
Shalaka Satheesh | Katharina Beckh | Katrin Klug | Héctor Allende-Cid | Sebastian Houben | Teena Hassan
Proceedings of the 31st International Conference on Computational Linguistics

To ensure reliable performance of Question Answering (QA) systems, evaluation of robustness is crucial. Common evaluation benchmarks commonly only include performance metrics, such as Exact Match (EM) and the F1 score. However, these benchmarks overlook critical factors for the deployment of QA systems. This oversight can result in systems vulnerable to minor perturbations in the input such as typographical errors. While several methods have been proposed to test the robustness of QA models, there has been minimal exploration of these approaches for languages other than English. This study focuses on the robustness evaluation of German language QA models, extending methodologies previously applied primarily to English. The objective is to nurture the development of robust models by defining an evaluation method specifically tailored to the German language. We assess the applicability of perturbations used in English QA models for German and perform a comprehensive experimental evaluation with eight models. The results show that all models are vulnerable to character-level perturbations. Additionally, the comparison of monolingual and multilingual models suggest that the former are less affected by character and word-level perturbations.

2018

pdf bib
Working Memory Networks: Augmenting Memory Networks with a Relational Reasoning Module
Juan Pavez | Héctor Allende | Héctor Allende-Cid
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

During the last years, there has been a lot of interest in achieving some kind of complex reasoning using deep neural networks. To do that, models like Memory Networks (MemNNs) have combined external memory storages and attention mechanisms. These architectures, however, lack of more complex reasoning mechanisms that could allow, for instance, relational reasoning. Relation Networks (RNs), on the other hand, have shown outstanding results in relational reasoning tasks. Unfortunately, their computational cost grows quadratically with the number of memories, something prohibitive for larger problems. To solve these issues, we introduce the Working Memory Network, a MemNN architecture with a novel working memory storage and reasoning module. Our model retains the relational reasoning abilities of the RN while reducing its computational complexity from quadratic to linear. We tested our model on the text QA dataset bAbI and the visual QA dataset NLVR. In the jointly trained bAbI-10k, we set a new state-of-the-art, achieving a mean error of less than 0.5%. Moreover, a simple ensemble of two of our models solves all 20 tasks in the joint version of the benchmark.

pdf bib
Working Memory Networks: Augmenting Memory Networks with a Relational Reasoning Module
Juan Pavez | Héctor Allende | Héctor Allende-Cid
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

During the last years, there has been a lot of interest in achieving some kind of complex reasoning using deep neural networks. To do that, models like Memory Networks (MemNNs) have combined external memory storages and attention mechanisms. These architectures, however, lack of more complex reasoning mechanisms that could allow, for instance, relational reasoning. Relation Networks (RNs), on the other hand, have shown outstanding results in relational reasoning tasks. Unfortunately, their computational cost grows quadratically with the number of memories, something prohibitive for larger problems. To solve these issues, we introduce the Working Memory Network, a MemNN architecture with a novel working memory storage and reasoning module. Our model retains the relational reasoning abilities of the RN while reducing its computational complexity from quadratic to linear. We tested our model on the text QA dataset bAbI and the visual QA dataset NLVR. In the jointly trained bAbI-10k, we set a new state-of-the-art, achieving a mean error of less than 0.5%. Moreover, a simple ensemble of two of our models solves all 20 tasks in the joint version of the benchmark.