Hendrik ter Horst
2020
Structured Prediction for Joint Class Cardinality and Entity Property Inference in Model-Complete Text Comprehension
Hendrik ter Horst
|
Philipp Cimiano
Proceedings of the Fourth Workshop on Structured Prediction for NLP
Model-complete text comprehension aims at interpreting a natural language text with respect to a semantic domain model describing the classes and their properties relevant for the domain in question. Solving this task can be approached as a structured prediction problem, consisting in inferring the most probable instance of the semantic model given the text. In this work, we focus on the challenging sub-problem of cardinality prediction that consists in predicting the number of distinct individuals of each class in the semantic model. We show that cardinality prediction can successfully be approached by modeling the overall task as a joint inference problem, predicting the number of individuals of certain classes while at the same time extracting their properties. We approach this task with probabilistic graphical models computing the maximum-a-posteriori instance of the semantic model. Our main contribution lies on the empirical investigation and analysis of different approximative inference strategies based on Gibbs sampling. We present and evaluate our models on the task of extracting key parameters from scientific full text articles describing pre-clinical studies in the domain of spinal cord injury.
2018
SANTO: A Web-based Annotation Tool for Ontology-driven Slot Filling
Matthias Hartung
|
Hendrik ter Horst
|
Frank Grimm
|
Tim Diekmann
|
Roman Klinger
|
Philipp Cimiano
Proceedings of ACL 2018, System Demonstrations
Supervised machine learning algorithms require training data whose generation for complex relation extraction tasks tends to be difficult. Being optimized for relation extraction at sentence level, many annotation tools lack in facilitating the annotation of relational structures that are widely spread across the text. This leads to non-intuitive and cumbersome visualizations, making the annotation process unnecessarily time-consuming. We propose SANTO, an easy-to-use, domain-adaptive annotation tool specialized for complex slot filling tasks which may involve problems of cardinality and referential grounding. The web-based architecture enables fast and clearly structured annotation for multiple users in parallel. Relational structures are formulated as templates following the conceptualization of an underlying ontology. Further, import and export procedures of standard formats enable interoperability with external sources and tools.