Heting Zhang
2021
MultiMET: A Multimodal Dataset for Metaphor Understanding
Dongyu Zhang
|
Minghao Zhang
|
Heting Zhang
|
Liang Yang
|
Hongfei Lin
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
Metaphor involves not only a linguistic phenomenon, but also a cognitive phenomenon structuring human thought, which makes understanding it challenging. As a means of cognition, metaphor is rendered by more than texts alone, and multimodal information in which vision/audio content is integrated with the text can play an important role in expressing and understanding metaphor. However, previous metaphor processing and understanding has focused on texts, partly due to the unavailability of large-scale datasets with ground truth labels of multimodal metaphor. In this paper, we introduce MultiMET, a novel multimodal metaphor dataset to facilitate understanding metaphorical information from multimodal text and image. It contains 10,437 text-image pairs from a range of sources with multimodal annotations of the occurrence of metaphors, domain relations, sentiments metaphors convey, and author intents. MultiMET opens the door to automatic metaphor understanding by investigating multimodal cues and their interplay. Moreover, we propose a range of strong baselines and show the importance of combining multimodal cues for metaphor understanding. MultiMET will be released publicly for research.
2019
Telling the Whole Story: A Manually Annotated Chinese Dataset for the Analysis of Humor in Jokes
Dongyu Zhang
|
Heting Zhang
|
Xikai Liu
|
Hongfei Lin
|
Feng Xia
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Humor plays important role in human communication, which makes it important problem for natural language processing. Prior work on the analysis of humor focuses on whether text is humorous or not, or the degree of funniness, but this is insufficient to explain why it is funny. We therefore create a dataset on humor with 9,123 manually annotated jokes in Chinese. We propose a novel annotation scheme to give scenarios of how humor arises in text. Specifically, our annotations of linguistic humor not only contain the degree of funniness, like previous work, but they also contain key words that trigger humor as well as character relationship, scene, and humor categories. We report reasonable agreement between annota-tors. We also conduct an analysis and exploration of the dataset. To the best of our knowledge, we are the first to approach humor annotation for exploring the underlying mechanism of the use of humor, which may contribute to a significantly deeper analysis of humor. We also contribute with a scarce and valuable dataset, which we will release publicly.
Search
Co-authors
- Dongyu Zhang 2
- Hongfei Lin 2
- Minghao Zhang 1
- Liang Yang 1
- Xikai Liu 1
- show all...
- Feng Xia 1