Hongxiao Bai


2021

pdf bib
Cross-lingual Supervision Improves Unsupervised Neural Machine Translation
Mingxuan Wang | Hongxiao Bai | Hai Zhao | Lei Li
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Papers

We propose to improve unsupervised neural machine translation with cross-lingual supervision (), which utilizes supervision signals from high resource language pairs to improve the translation of zero-source languages. Specifically, for training En-Ro system without parallel corpus, we can leverage the corpus from En-Fr and En-De to collectively train the translation from one language into many languages under one model. % is based on multilingual models which require no changes to the standard unsupervised NMT. Simple and effective, significantly improves the translation quality with a big margin in the benchmark unsupervised translation tasks, and even achieves comparable performance to supervised NMT. In particular, on WMT’14 -tasks achieves 37.6 and 35.18 BLEU score, which is very close to the large scale supervised setting and on WMT’16 -tasks achieves 35.09 BLEU score which is even better than the supervised Transformer baseline.

2019

pdf bib
SJTU at MRP 2019: A Transition-Based Multi-Task Parser for Cross-Framework Meaning Representation Parsing
Hongxiao Bai | Hai Zhao
Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 Conference on Natural Language Learning

This paper describes the system of our team SJTU for our participation in the CoNLL 2019 Shared Task: Cross-Framework Meaning Representation Parsing. The goal of the task is to advance data-driven parsing into graph-structured representations of sentence meaning. This task includes five meaning representation frameworks: DM, PSD, EDS, UCCA, and AMR. These frameworks have different properties and structures. To tackle all the frameworks in one model, it is needed to find out the commonality of them. In our work, we define a set of the transition actions to once-for-all tackle all the frameworks and train a transition-based model to parse the meaning representation. The adopted multi-task model also can allow learning for one framework to benefit the others. In the final official evaluation of the shared task, our system achieves 42% F1 unified MRP metric score.

2018

pdf bib
Deep Enhanced Representation for Implicit Discourse Relation Recognition
Hongxiao Bai | Hai Zhao
Proceedings of the 27th International Conference on Computational Linguistics

Implicit discourse relation recognition is a challenging task as the relation prediction without explicit connectives in discourse parsing needs understanding of text spans and cannot be easily derived from surface features from the input sentence pairs. Thus, properly representing the text is very crucial to this task. In this paper, we propose a model augmented with different grained text representations, including character, subword, word, sentence, and sentence pair levels. The proposed deeper model is evaluated on the benchmark treebank and achieves state-of-the-art accuracy with greater than 48% in 11-way and F1 score greater than 50% in 4-way classifications for the first time according to our best knowledge.

pdf bib
Syntax for Semantic Role Labeling, To Be, Or Not To Be
Shexia He | Zuchao Li | Hai Zhao | Hongxiao Bai
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Semantic role labeling (SRL) is dedicated to recognizing the predicate-argument structure of a sentence. Previous studies have shown syntactic information has a remarkable contribution to SRL performance. However, such perception was challenged by a few recent neural SRL models which give impressive performance without a syntactic backbone. This paper intends to quantify the importance of syntactic information to dependency SRL in deep learning framework. We propose an enhanced argument labeling model companying with an extended korder argument pruning algorithm for effectively exploiting syntactic information. Our model achieves state-of-the-art results on the CoNLL-2008, 2009 benchmarks for both English and Chinese, showing the quantitative significance of syntax to neural SRL together with a thorough empirical survey over existing models.