Hussein Al-Olimat
2018
A Practical Incremental Learning Framework For Sparse Entity Extraction
Hussein Al-Olimat
|
Steven Gustafson
|
Jason Mackay
|
Krishnaprasad Thirunarayan
|
Amit Sheth
Proceedings of the 27th International Conference on Computational Linguistics
This work addresses challenges arising from extracting entities from textual data, including the high cost of data annotation, model accuracy, selecting appropriate evaluation criteria, and the overall quality of annotation. We present a framework that integrates Entity Set Expansion (ESE) and Active Learning (AL) to reduce the annotation cost of sparse data and provide an online evaluation method as feedback. This incremental and interactive learning framework allows for rapid annotation and subsequent extraction of sparse data while maintaining high accuracy. We evaluate our framework on three publicly available datasets and show that it drastically reduces the cost of sparse entity annotation by an average of 85% and 45% to reach 0.9 and 1.0 F-Scores respectively. Moreover, the method exhibited robust performance across all datasets.
Location Name Extraction from Targeted Text Streams using Gazetteer-based Statistical Language Models
Hussein Al-Olimat
|
Krishnaprasad Thirunarayan
|
Valerie Shalin
|
Amit Sheth
Proceedings of the 27th International Conference on Computational Linguistics
Extracting location names from informal and unstructured social media data requires the identification of referent boundaries and partitioning compound names. Variability, particularly systematic variability in location names (Carroll, 1983), challenges the identification task. Some of this variability can be anticipated as operations within a statistical language model, in this case drawn from gazetteers such as OpenStreetMap (OSM), Geonames, and DBpedia. This permits evaluation of an observed n-gram in Twitter targeted text as a legitimate location name variant from the same location-context. Using n-gram statistics and location-related dictionaries, our Location Name Extraction tool (LNEx) handles abbreviations and automatically filters and augments the location names in gazetteers (handling name contractions and auxiliary contents) to help detect the boundaries of multi-word location names and thereby delimit them in texts. We evaluated our approach on 4,500 event-specific tweets from three targeted streams to compare the performance of LNEx against that of ten state-of-the-art taggers that rely on standard semantic, syntactic and/or orthographic features. LNEx improved the average F-Score by 33-179%, outperforming all taggers. Further, LNEx is capable of stream processing.
Search