Hussein Hussein
2018
Style Detection for Free Verse Poetry from Text and Speech
Timo Baumann
|
Hussein Hussein
|
Burkhard Meyer-Sickendiek
Proceedings of the 27th International Conference on Computational Linguistics
Modern and post-modern free verse poems feature a large and complex variety in their poetic prosodies that falls along a continuum from a more fluent to a more disfluent and choppy style. As the poets of modernism overcame rhyme and meter, they oriented themselves in these two opposing directions, creating a free verse spectrum that calls for new analyses of prosodic forms. We present a method, grounded in philological analysis and current research on cognitive (dis)fluency, for automatically analyzing this spectrum. We define and relate six classes of poetic styles (ranging from parlando to lettristic decomposition) by their gradual differentiation. Based on this discussion, we present a model for automatic prosodic classification of spoken free verse poetry that uses deep hierarchical attention networks to integrate the source text and audio and predict the assigned class. We evaluate our model on a large corpus of German author-read post-modern poetry and find that classes can reliably be differentiated, reaching a weighted f-measure of 0.73, when combining textual and phonetic evidence. In our further analyses, we validate the model’s decision-making process, the philologically hypothesized continuum of fluency and investigate the relative importance of various features.
Analysis of Rhythmic Phrasing: Feature Engineering vs. Representation Learning for Classifying Readout Poetry
Timo Baumann
|
Hussein Hussein
|
Burkhard Meyer-Sickendiek
Proceedings of the Second Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature
We show how to classify the phrasing of readout poems with the help of machine learning algorithms that use manually engineered features or automatically learn representations. We investigate modern and postmodern poems from the webpage lyrikline, and focus on two exemplary rhythmical patterns in order to detect the rhythmic phrasing: The Parlando and the Variable Foot. These rhythmical patterns have been compared by using two important theoretical works: The Generative Theory of Tonal Music and the Rhythmic Phrasing in English Verse. Using both, we focus on a combination of four different features: The grouping structure, the metrical structure, the time-span-variation, and the prolongation in order to detect the rhythmic phrasing in the two rhythmical types. We use manually engineered features based on text-speech alignment and parsing for classification. We also train a neural network to learn its own representation based on text, speech and audio during pauses. The neural network outperforms manual feature engineering, reaching an f-measure of 0.85.
2012
Real-Time Tone Recognition in A Computer-Assisted Language Learning System for German Learners of Mandarin
Hussein Hussein
|
Hansjörg Mixdorff
|
Rüdiger Hoffmann
Proceedings of the Workshop on Speech and Language Processing Tools in Education