In machine translation, the problem of ambiguously gendered input has been pointed out, where the gender of an entity is not available in the source sentence. To address this ambiguity issue, the task of controlled translation that takes the gender of the ambiguous entity as additional input have been proposed. However, most existing works have only considered a simplified setup of one target gender for input. In this paper, we tackle controlled translation in a more realistic setting of inputs with multiple entities and propose Gender-of-Entity (GoE) prompting method for LLMs. Our proposed method instructs the model with fine-grained entity-level gender information to translate with correct gender inflections. By utilizing four evaluation benchmarks, we investigate the controlled translation capability of LLMs in multiple dimensions and find that LLMs reach state-of-the-art performance in controlled translation. Furthermore, we discover an emergence of gender interference phenomenon when controlling the gender of multiple entities. Finally, we address the limitations of existing gender accuracy evaluation metrics and propose leveraging LLMs as an evaluator for gender inflection in machine translation.
With the rapid advancement in deep generative models, recent neural Text-To-Speech(TTS) models have succeeded in synthesizing human-like speech. There have been some efforts to generate speech with various prosody beyond monotonous prosody patterns. However, previous works have several limitations. First, typical TTS models depend on the scaled sampling temperature for boosting the diversity of prosody. Speech samples generated at high sampling temperatures often lack perceptual prosodic diversity, which can adversely affect the naturalness of the speech. Second, the diversity among samples is neglected since the sampling procedure often focuses on a single speech sample rather than multiple ones. In this paper, we propose DPP-TTS: a text-to-speech model based on Determinantal Point Processes (DPPs) with a prosody diversifying module. Our TTS model is capable of generating speech samples that simultaneously consider perceptual diversity in each sample and among multiple samples. We demonstrate that DPP-TTS generates speech samples with more diversified prosody than baselines in the side-by-side comparison test considering the naturalness of speech at the same time.
Gender bias is a significant issue in machine translation, leading to ongoing research efforts in developing bias mitigation techniques. However, most works focus on debiasing bilingual models without much consideration for multilingual systems. In this paper, we specifically target the gender bias issue of multilingual machine translation models for unambiguous cases where there is a single correct translation, and propose a bias mitigation method based on a novel approach. Specifically, we propose Gender-Aware Contrastive Learning, GACL, which encodes contextual gender information into the representations of non-explicit gender words. Our method is target language-agnostic and is applicable to pre-trained multilingual machine translation models via fine-tuning. Through multilingual evaluation, we show that our approach improves gender accuracy by a wide margin without hampering translation performance. We also observe that incorporated gender information transfers and benefits other target languages regarding gender accuracy. Finally, we demonstrate that our method is applicable and beneficial to models of various sizes.
In Task Oriented Dialogue (TOD) system, detecting and inducing new intents are two main challenges to apply the system in the real world. In this paper, we suggest the semantic multiview model to resolve these two challenges: (1) SBERT for General Embedding (GE), (2) Multi Domain Batch (MDB) for dialogue domain knowledge, and (3) Proxy Gradient Transfer (PGT) for cluster-specialized semantic. MDB feeds diverse dialogue datasets to the model at once to tackle the multi-domain problem by learning the multiple domain knowledge. We introduce a novel method PGT, which employs the Siamese network to fine-tune the model with a clustering method directly. Our model can learn how to cluster dialogue utterances by using PGT. Experimental results demonstrate that our multi-view model with MDB and PGT significantly improves the Open Intent Induction performance compared to baseline systems.