2022
pdf
bib
abs
Multi-Domain Dialogue State Tracking By Neural-Retrieval Augmentation
Lohith Ravuru
|
Seonghan Ryu
|
Hyungtak Choi
|
Haehun Yang
|
Hyeonmok Ko
Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022
Dialogue State Tracking (DST) is a very complex task that requires precise understanding and information tracking of multi-domain conversations between users and dialogue systems. Many task-oriented dialogue systems use dialogue state tracking technology to infer users’ goals from the history of the conversation. Existing approaches for DST are usually conditioned on previous dialogue states. However, the dependency on previous dialogues makes it very challenging to prevent error propagation to subsequent turns of a dialogue. In this paper, we propose Neural Retrieval Augmentation to alleviate this problem by creating a Neural Index based on dialogue context. Our NRA-DST framework efficiently retrieves dialogue context from the index built using a combination of unstructured dialogue state and structured user/system utterances. We explore a simple pipeline resulting in a retrieval-guided generation approach for training a DST model. Experiments on different retrieval methods for augmentation show that neural retrieval augmentation is the best performing retrieval method for DST. Our evaluations on the large-scale MultiWOZ dataset show that our model outperforms the baseline approaches.
pdf
bib
abs
KILDST: Effective Knowledge-Integrated Learning for Dialogue State Tracking using Gazetteer and Speaker Information
Hyungtak Choi
|
Hyeonmok Ko
|
Gurpreet Kaur
|
Lohith Ravuru
|
Kiranmayi Gandikota
|
Manisha Jhawar
|
Simma Dharani
|
Pranamya Patil
Proceedings of the 19th International Conference on Natural Language Processing (ICON)
Dialogue State Tracking (DST) is core research in dialogue systems and has received much attention. In addition, it is necessary to define a new problem that can deal with dialogue between users as a step toward the conversational AI that extracts and recommends information from the dialogue between users. So, we introduce a new task - DST from dialogue between users about scheduling an event (DST-USERS). The DST-USERS task is much more challenging since it requires the model to understand and track dialogue states in the dialogue between users, as well as to understand who suggested the schedule and who agreed to the proposed schedule. To facilitate DST-USERS research, we develop dialogue datasets between users that plan a schedule. The annotated slot values which need to be extracted in the dialogue are date, time, and location. Previous approaches, such as Machine Reading Comprehension (MRC) and traditional DST techniques, have not achieved good results in our extensive evaluations. By adopting the knowledge-integrated learning method, we achieve exceptional results. The proposed model architecture combines gazetteer features and speaker information efficiently. Our evaluations of the dialogue datasets between users that plan a schedule show that our model outperforms the baseline model.
pdf
bib
abs
Efficient Dialog State Tracking Using Gated- Intent based Slot Operation Prediction for On-device Dialog Systems
Pranamya Patil
|
Hyungtak Choi
|
Ranjan Samal
|
Gurpreet Kaur
|
Manisha Jhawar
|
Aniruddha Tammewar
|
Siddhartha Mukherjee
Proceedings of the 19th International Conference on Natural Language Processing (ICON)
Conversational agents on smart devices need to be efficient concerning latency in responding, for enhanced user experience and real-time utility. This demands on-device processing (as on-device processing is quicker), which limits the availability of resources such as memory and processing. Most state-of-the-art Dialog State Tracking (DST) systems make use of large pre-trained language models that require high resource computation, typically available on high-end servers. Whereas, on-device systems are memory efficient, have reduced time/latency, preserve privacy, and don’t rely on network. A recent approach tries to reduce the latency by splitting the task of slot prediction into two subtasks of State Operation Prediction (SOP) to select an action for each slot, and Slot Value Generation (SVG) responsible for producing values for the identified slots. SVG being computationally expensive, is performed only for a small subset of actions predicted in the SOP. Motivated from this optimization technique, we build a similar system and work on multi-task learning to achieve significant improvements in DST performance, while optimizing the resource consumption. We propose a quadruplet (Domain, Intent, Slot, and Slot Value) based DST, which significantly boosts the performance. We experiment with different techniques to fuse different layers of representations from intent and slot prediction tasks. We obtain the best joint accuracy of 53.3% on the publicly available MultiWOZ 2.2 dataset, using BERT-medium along with a gating mechanism. We also compare the cost efficiency of our system with other large models and find that our system is best suited for an on-device based production environment.
2020
pdf
bib
abs
An Empirical Study on Multi-Task Learning for Text Style Transfer and Paraphrase Generation
Pawel Bujnowski
|
Kseniia Ryzhova
|
Hyungtak Choi
|
Katarzyna Witkowska
|
Jaroslaw Piersa
|
Tymoteusz Krumholc
|
Katarzyna Beksa
Proceedings of the 28th International Conference on Computational Linguistics: Industry Track
The topic of this paper is neural multi-task training for text style transfer. We present an efficient method for neutral-to-style transformation using the transformer framework. We demonstrate how to prepare a robust model utilizing large paraphrases corpora together with a small parallel style transfer corpus. We study how much style transfer data is needed for a model on the example of two transformations: neutral-to-cute on internal corpus and modern-to-antique on publicly available Bible corpora. Additionally, we propose a synthetic measure for the automatic evaluation of style transfer models. We hope our research is a step towards replacing common but limited rule-based style transfer systems by more flexible machine learning models for both public and commercial usage.
2019
pdf
bib
abs
VAE-PGN based Abstractive Model in Multi-stage Architecture for Text Summarization
Hyungtak Choi
|
Lohith Ravuru
|
Tomasz Dryjański
|
Sunghan Rye
|
Donghyun Lee
|
Hojung Lee
|
Inchul Hwang
Proceedings of the 12th International Conference on Natural Language Generation
This paper describes our submission to the TL;DR challenge. Neural abstractive summarization models have been successful in generating fluent and consistent summaries with advancements like the copy (Pointer-generator) and coverage mechanisms. However, these models suffer from their extractive nature as they learn to copy words from the source text. In this paper, we propose a novel abstractive model based on Variational Autoencoder (VAE) to address this issue. We also propose a Unified Summarization Framework for the generation of summaries. Our model eliminates non-critical information at a sentence-level with an extractive summarization module and generates the summary word by word using an abstractive summarization module. To implement our framework, we combine submodules with state-of-the-art techniques including Pointer-Generator Network (PGN) and BERT while also using our new VAE-PGN abstractive model. We evaluate our model on the benchmark Reddit corpus as part of the TL;DR challenge and show that our model outperforms the baseline in ROUGE score while generating diverse summaries.
2018
pdf
bib
abs
Self-Learning Architecture for Natural Language Generation
Hyungtak Choi
|
Siddarth K.M.
|
Haehun Yang
|
Heesik Jeon
|
Inchul Hwang
|
Jihie Kim
Proceedings of the 11th International Conference on Natural Language Generation
In this paper, we propose a self-learning architecture for generating natural language templates for conversational assistants. Generating templates to cover all the combinations of slots in an intent is time consuming and labor-intensive. We examine three different models based on our proposed architecture - Rule-based model, Sequence-to-Sequence (Seq2Seq) model and Semantically Conditioned LSTM (SC-LSTM) model for the IoT domain - to reduce the human labor required for template generation. We demonstrate the feasibility of template generation for the IoT domain using our self-learning architecture. In both automatic and human evaluation, the self-learning architecture outperforms previous works trained with a fully human-labeled dataset. This is promising for commercial conversational assistant solutions.