Idan Schwartz
2022
Describing Sets of Images with Textual-PCA
Oded Hupert
|
Idan Schwartz
|
Lior Wolf
Findings of the Association for Computational Linguistics: EMNLP 2022
We seek to semantically describe a set of images, capturing both the attributes of single images and the variations within the set. Our procedure is analogous to Principle Component Analysis, in which the role of projection vectors is replaced with generated phrases. First, a centroid phrase that has the largest average semantic similarity to the images in the set is generated, where both the computation of the similarity and the generation are based on pretrained vision-language models. Then, the phrase that generates the highest variation among the similarity scores is generated, using the same models. The next phrase maximizes the variance subject to being orthogonal, in the latent space, to the highest-variance phrase, and the process continues. Our experiments show that our method is able to convincingly capture the essence of image sets and describe the individual elements in a semantically meaningful way within the context of the entire set. Our code is available at: https://github.com/OdedH/textual-pca.
2021
Ensemble of MRR and NDCG models for Visual Dialog
Idan Schwartz
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Assessing an AI agent that can converse in human language and understand visual content is challenging. Generation metrics, such as BLEU scores favor correct syntax over semantics. Hence a discriminative approach is often used, where an agent ranks a set of candidate options. The mean reciprocal rank (MRR) metric evaluates the model performance by taking into account the rank of a single human-derived answer. This approach, however, raises a new challenge: the ambiguity and synonymy of answers, for instance, semantic equivalence (e.g., ‘yeah’ and ‘yes’). To address this, the normalized discounted cumulative gain (NDCG) metric has been used to capture the relevance of all the correct answers via dense annotations. However, the NDCG metric favors the usually applicable uncertain answers such as ‘I don’t know.’ Crafting a model that excels on both MRR and NDCG metrics is challenging. Ideally, an AI agent should answer a human-like reply and validate the correctness of any answer. To address this issue, we describe a two-step non-parametric ranking approach that can merge strong MRR and NDCG models. Using our approach, we manage to keep most MRR state-of-the-art performance (70.41% vs. 71.24%) and the NDCG state-of-the-art performance (72.16% vs. 75.35%). Moreover, our approach won the recent Visual Dialog 2020 challenge. Source code is available at https://github.com/idansc/mrr-ndcg.