Inbar Oren
2021
Finding needles in a haystack: Sampling Structurally-diverse Training Sets from Synthetic Data for Compositional Generalization
Inbar Oren
|
Jonathan Herzig
|
Jonathan Berant
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
Modern semantic parsers suffer from two principal limitations. First, training requires expensive collection of utterance-program pairs. Second, semantic parsers fail to generalize at test time to new compositions/structures that have not been observed during training. Recent research has shown that automatic generation of synthetic utterance-program pairs can alleviate the first problem, but its potential for the second has thus far been under-explored. In this work, we investigate automatic generation of synthetic utterance-program pairs for improving compositional generalization in semantic parsing. Given a small training set of annotated examples and an “infinite” pool of synthetic examples, we select a subset of synthetic examples that are structurally-diverse and use them to improve compositional generalization. We evaluate our approach on a new split of the schema2QA dataset, and show that it leads to dramatic improvements in compositional generalization as well as moderate improvements in the traditional i.i.d setup. Moreover, structurally-diverse sampling achieves these improvements with as few as 5K examples, compared to 1M examples when sampling uniformly at random – a 200x improvement in data efficiency.
2020
Improving Compositional Generalization in Semantic Parsing
Inbar Oren
|
Jonathan Herzig
|
Nitish Gupta
|
Matt Gardner
|
Jonathan Berant
Findings of the Association for Computational Linguistics: EMNLP 2020
Generalization of models to out-of-distribution (OOD) data has captured tremendous attention recently. Specifically, compositional generalization, i.e., whether a model generalizes to new structures built of components observed during training, has sparked substantial interest. In this work, we investigate compositional generalization in semantic parsing, a natural test-bed for compositional generalization, as output programs are constructed from sub-components. We analyze a wide variety of models and propose multiple extensions to the attention module of the semantic parser, aiming to improve compositional generalization. We find that the following factors improve compositional generalization: (a) using contextual representations, such as ELMo and BERT, (b) informing the decoder what input tokens have previously been attended to, (c) training the decoder attention to agree with pre-computed token alignments, and (d) downsampling examples corresponding to frequent program templates. While we substantially reduce the gap between in-distribution and OOD generalization, performance on OOD compositions is still substantially lower.