Ismael Bada
2020
Reconnaissance automatique de la parole : génération des prononciations non natives pour l’enrichissement du lexique (In this study we propose a method for lexicon adaptation in order to improve the automatic speech recognition (ASR) of non-native speakers)
Ismael Bada
|
Dominique Fohr
|
Irina Illina
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 1 : Journées d'Études sur la Parole
Dans cet article nous proposons une méthode d’adaptation du lexique, destinée à améliorer les systèmes de la reconnaissance automatique de la parole (SRAP) des locuteurs non natifs. En effet, la reconnaissance automatique souffre d’une chute significative de ses performances quand elle est utilisée pour reconnaître la parole des locuteurs non natifs, car les phonèmes de la langue étrangère sont fréquemment mal prononcés par ces locuteurs. Pour prendre en compte ce problème de prononciations erronées, notre approche propose d’intégrer les prononciations non natives dans le lexique et par la suite d’utiliser ce lexique enrichi pour la reconnaissance. Pour réaliser notre approche nous avons besoin d’un petit corpus de parole non native et de sa transcription. Pour générer les prononciations non natives, nous proposons de tenir compte des correspondances graphèmes-phonèmes en vue de générer de manière automatique des règles de création de nouvelles prononciations. Ces nouvelles prononciations seront ajoutées au lexique. Nous présentons une évaluation de notre méthode sur un corpus de locuteurs non natifs français s’exprimant en anglais.