Ivano Basile
2017
Towards Quantum Language Models
Ivano Basile
|
Fabio Tamburini
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
This paper presents a new approach for building Language Models using the Quantum Probability Theory, a Quantum Language Model (QLM). It mainly shows that relying on this probability calculus it is possible to build stochastic models able to benefit from quantum correlations due to interference and entanglement. We extensively tested our approach showing its superior performances, both in terms of model perplexity and inserting it into an automatic speech recognition evaluation setting, when compared with state-of-the-art language modelling techniques.